
CommCareHQ Deployment

Dimagi Inc

May 17, 2024

CONTENTS

1 Getting Started 3
1.1 About CommCare HQ . 3
1.2 About this Guide . 3
1.3 A word of caution on Self Hosting . 3
1.4 How to use this guide to self host CommCare HQ . 4

2 Prerequisites to Setup CommCare HQ in Production 5
2.1 Things to consider when Self Hosting . 5
2.2 Architecture and Platform Overview . 7
2.3 Roles And Responsibilities for Hosting CommCare . 7
2.4 Hardware requirements and Deployment Options . 10
2.5 Managing Hardware and the Physical Environment . 14
2.6 Software and Tools requirements . 16
2.7 CommCare Cloud Deployment Tool . 17

3 Deploy CommCare HQ 19
3.1 Quick Install on Single Server . 19
3.2 Install Using Commcare-Cloud on one or more machines . 21
3.3 Troubleshooting first time setup . 32
3.4 Testing your new CommCare Environment . 36
3.5 Migrating CommCare HQ . 45
3.6 Go Live Checklist . 50

4 Operations and maintenance 53
4.1 Managing The Deployment . 53
4.2 Monitoring and Alerting . 60
4.3 Set up Sentry for error logs . 77
4.4 Expectations for Ongoing Maintenance . 78
4.5 Supporting Your Users . 78

5 How to Scale 87
5.1 Performance Benchmarking for CommCare HQ using Locust . 87
5.2 How to Estimate Infrastructure Sizing . 89

6 CommCare HQ Services Guides 91
6.1 PostgreSQL . 91
6.2 BlobDB . 109
6.3 Nginx . 113
6.4 Kafka . 116
6.5 Pillowtop . 120
6.6 RabbitMQ . 122

i

6.7 Redis . 122
6.8 Set up Bitly for generating app codes . 123
6.9 Keepalived . 123

7 Backups and Disaster Recovery 125
7.1 Backup and Restore . 125
7.2 ElasticSearch Backup on Swift API . 131
7.3 Disaster Recovery . 132

8 Securing CommCare HQ 135
8.1 Introduction . 135
8.2 Application Security . 136
8.3 Host and Disk Security . 136
8.4 Network and Physical Security . 136

9 Reference Annexure 137
9.1 CommCare Cloud Reference . 137
9.2 User Access Management . 187
9.3 Firefighting Production Issues . 188
9.4 Specialized Howtos . 222
9.5 Settings in public.yml . 233
9.6 Ports Required for CommCare HQ . 235

10 About this changelog 237
10.1 Changelog . 237

ii

CommCareHQ Deployment

This documentation contains guides and reference material on how to self host CommCare HQ locally. It covers
requirements to self host CommCare HQ, various deployment types, infrastrucutre and team requirements to host
CommCare HQ, installation instructions for single and multi server deployment and how to manage CommCare HQ
deployment through the entire hosting lifecycle.

CONTENTS 1

CommCareHQ Deployment

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 About CommCare HQ

CommCare is a multi-tier mobile, server, and messaging based platform. The server part of the platform is called as
CommCare HQ. The platform enables end-users to build and configure content through a user interface, deploy that
application to Android or J2ME based devices, and receive data back in real-time (if connected) from the mobile appli-
cations. In addition, content may be defined that leverages bi-directional messaging to end-users via API interfaces to
SMS Gateways, E-mails systems, or other messaging services. The system leverages multiple persistence mechanisms,
analytical frameworks, and open source libraries.

CommCare HQ is offered through Dimagi managed cloud with free and tiered subscription models at https://wwww.
commcarehq.org. Please refer to https://www.commcarehq.org/pricing/ and https://dimagi.com/services/ for informa-
tion on this. If you are interested in self hosting CommCare HQ this guide is for you.

1.2 About this Guide

This documentation contains tutorials, guides, and reference material on how to self host CommCare HQ, infrastructure
and team requirements, installation instructions for single and multi server deployment, and how to manage Comm-
Care HQ deployment through the entire hosting life-cycle. This documentation is relevant for those who want to host
CommCare HQ locally on their infrastructure.

If you are looking for something else please see below.

• If you are interested in using CommCare HQ without having to host yourself, please check out our cloud offering
at https://www.commcarehq.org.

• Docs on how to use CommCare HQ https://wiki.commcarehq.org/display/commcarepublic/Home

• Setting up CommCare HQ locally for development https://github.com/dimagi/commcare-hq/blob/master/DEV_
SETUP.md

1.3 A word of caution on Self Hosting

CommCare HQ is a complex, distributed software application, made up of dozens of processes and several pieces
of third-party open source database software. It has been built for scale rather than simplicity, and as a result even
for small deployments a CommCare server or server cluster can be challenging to maintain. An organization endeav-
oring to manage their own CommCare server environment must be willing to devote considerable effort and system
administration capacity not only in the initial phases of provisioning, setup, and installation, but in steady state as well.

3

https://wwww.commcarehq.org
https://wwww.commcarehq.org
https://www.commcarehq.org/pricing/
https://dimagi.com/services/
https://www.commcarehq.org
https://wiki.commcarehq.org/display/commcarepublic/Home
https://github.com/dimagi/commcare-hq/blob/master/DEV_SETUP.md
https://github.com/dimagi/commcare-hq/blob/master/DEV_SETUP.md

CommCareHQ Deployment

If you or your organization is hosting or interested in hosting its own CommCare HQ server environment, we strongly
suggest you to read about the Things to consider when Self Hosting and prerequisites required to host CommCare locally
at Prerequisites to Setup CommCare HQ in Production.

1.4 How to use this guide to self host CommCare HQ

1. Read and understand all the prerequisites for hosting at Prerequisites to Setup CommCare HQ in Production.

2. Figure out which installation is most suitable for you using Hardware requirements and Deployment Options
doc.

3. Use one of the deployment guides here to install and configure all the required services to run CommCare HQ.

4. For managing, updating CommCare HQ, monitoring and troubleshooting check out Operations and maintenance.

5. To understand how each service is used and perform common operations related to services checkout the section
on CommCare HQ Services Guides.

6. To scale services when required consult the section on How to Scale.

7. Ensure you have setup backups correctly and have a disaster recovery plan using Backups and Disaster Recovery.

4 Chapter 1. Getting Started

CHAPTER

TWO

PREREQUISITES TO SETUP COMMCARE HQ IN PRODUCTION

In this section, we list down various prerequisites for self hosting CommCare HQ successfully.

• To know the architecture of CommCare HQ and complexities of hosting read Architecture and Platform Overview
and Things to consider when Self Hosting.

• To know the personnel and technical skills required read Roles And Responsibilities for Hosting CommCare.

• To know how much hardware you need and what tools and services you need read Hardware requirements and
Deployment Options and Software and Tools requirements.

• Once you have all the prerequisites you can follow tutorials in Deploy CommCare HQ section to install Comm-
Care HQ.

2.1 Things to consider when Self Hosting

If you are interested in running a CommCare server environment there are a number of serious obstacles to consider
before taking the plunge. If you are already managing a CommCare server environment and are finding it challenging,
you may also find thinking about the considerations listed here helpful before deciding your next steps.

2.1.1 CommCare Cluster Management

CommCare HQ is a complex, distributed software application, made up of dozens of processes and several pieces of
third-party open source database software. It has been built for scale rather than simplicity, and as a result even for
small deployments a CommCare server or server cluster can be challenging to maintain.

Many processes

While the setup automation should work out of the box, once you’re up and running you will have to troubleshoot any
issues yourself. This means being familiar enough with every piece of third-party database software to be able to debug
issues and bring it back to life or recover from some other bad state; it also means understanding what each of the many
types of CommCare application processes does well enough to troubleshoot issues.

CommCare HQ relies on the following open source technologies:

• PostgreSQL

• PL/Proxy and a custom sharding setup

• pg_backup and streaming replication

• CouchDB

• Redis

5

CommCareHQ Deployment

• Riak/Riak CS (mandatory for multi-server environments)

• Elasticsearch

• Kafka (and Zookeeper)

• RabbitMQ

• Nginx

CommCare HQ also employs different types of application processes each with its own distinct purpose and set of
functionality:

• Web workers

• Asynchronous task processors (Celery)

• ETL processes (“Pillowtop”) that themselves come in a number of different flavors and fill a number of different
roles

• The CommCare mobile engine exposed as a webservice (“Formplayer”)

You will also need some familiarity with the following sysadmin tools:

• Monit

• Supervisor

• Ansible

• EcryptFS

• LVM (optional)

2.1.2 Physical Server Management

This section is for people interested in owning the physical hardware running their servers. If you will be using an
established data center or modern hosting provider, this doesn’t apply.

It can be tempting to want to run CommCare HQ on server hardware that you own. After all, a server is just a computer
connected to the internet, with enough RAM, CPU, and Disk to run the software it’s hosting. However, in practice,
there’s a lot more that goes into it.

Network Connection

One of the biggest difficulties in maintaining physical server hardware is that to be reliable it must always be connected
to the internet over a stable and reliable network. In many of the areas of the world that are most interested in self-
hosting for data-sovereignty reasons, network connectivity is notoriously spotty. Real data centers will go to great
lengths to keep their servers always connected to the public internet, including network redundancy. It can be close to
impossible to do this at the level of one or two servers in an office, so in practice, these servers will experience large
rates of downtime.

6 Chapter 2. Prerequisites to Setup CommCare HQ in Production

https://en.wikipedia.org/wiki/Extract,_transform,_load
https://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29

CommCareHQ Deployment

Power Source

Another often-overlooked challenge with managing physical hardware is maintaining a reliable power source. In many
areas of the world that use CommCare, reliable power is not a given. Even with a generator, unless there’s a sophisticated
battery backup system in place, it will take a number of seconds for the generator to kick in, and even the slightest blip
in power supply will cause a server to shut off without warning. Thus, without a well-planned system in place for
maintaining consistent power even through a grid outage, these servers will experience a lot of downtime and will be
at risk for data corruption as a result of powering off without warning.

Physical Security

Real data centers are highly guarded by security personnel and have authorization protocols preventing physical access
to the servers except by a small handful of entrusted individuals. With physical access to a machine, a malicious or
unwitting person can steal private information or cause untold damage including deletion of all data. In the typical
office environment, maintaining an appropriate level of physical security around the hardware is not a given, and will
require concerted effort and planning.

Temperature Control

Computer hardware gives off a tremendous amount of heat. Servers are hot, and so are many of the areas of the world
that use CommCare. Real data centers are carefully designed to manage heat flow and sites are often specifically
chosen for environmental features such as cold outdoor temperature or proximity to a vast water source for cooling.
Overheating is a very real issue and when it happens it will lead to unpredictable hardware failure.

2.2 Architecture and Platform Overview

It is useful to have some context on what it is that you are hosting when you are hosting CommCare HQ. A good place
to find that context is the Architecture Overview. This will also show how data flows for forms and cases.

For a more abstract overview of the platform, visit the Platform overview link.

2.3 Roles And Responsibilities for Hosting CommCare

2.3.1 Introduction

This section is intended to convey the different roles and responsibilities which are associated with setting up and
maintaining a privately hosted local cloud instance of CommCare HQ, along with expectations around what skills and
knowledge are needed to fulfill them. An individual person or firm may fulfill a number of these roles, but they are
separated here to clarify the skills and availability required to fulfill them.

These are based directly on Dimagi’s process and experience providing CommCare HQ as a managed SaaS platform
and managed cloud, but they may not be comprehensive depending on specific local or organizational needs.

2.2. Architecture and Platform Overview 7

https://commcare-hq.readthedocs.io/overview/architecture.html
https://commcare-hq.readthedocs.io/overview/platform.html

CommCareHQ Deployment

2.3.2 Infrastructure Provider

Responsible for providing the physical resources needed by the cluster (servers, network interfaces, etc.) When pro-
viding infrastructure as a service to other businesses we’d refer to this as the “Cloud Services Provider.”

Scope of Work

• Virtual Machine hosting

• Support and debugging for non-responsive hardware

Skills and Knowledge Required

• VMWare or other virtualization technology

• Network interfaces, including firewalls and load balancing

Sample Providers

• AWS EC2

• Rackspace Managed Infrastructure

• Microsoft Azure

• IBM Softlayer

2.3.3 Cluster Management

Responsible for understanding and maintaining the physical infrastructure that has been provided and ensuring its
availability and reliability.

Scope of Work

• Installing operating systems and configuring cloud resources to spec

• Applying security patches and operating system updates

• Establishing protocols for backups and system recovery

• Monitoring the servers for intrusion detection and other active security monitoring

• Responding to active threats to availability and security like DDOS attacks

Skills and Knowledge Required

• General Linux system administration

• Understanding of virtual machine resources, network infrastructures, and other core IT concepts

• Familiarity with backup and recovery schemes for the relevant components of the CommCare infrastructure

• General knowledge of security best practices

8 Chapter 2. Prerequisites to Setup CommCare HQ in Production

CommCareHQ Deployment

Sample Providers

• Rackspace Managed Services

• AWS Managed Services

Note: Commercially, this offering is generally made on top of managed infrastructure by the same company, and the
two are traditionally bundled.

2.3.4 Cloud Application Management / Operations Engineer

Responsible for deploying the CommCare web application and dependent services, and keeping them up-to-date.

When this role and the role above are provided together as a service, that shared role is referred to as a “Managed
Services Provider”.

Scope of Work

• Sizing and scoping the cloud infrastructure needs

• Provisioning servers with the cloud software applications

• Debugging and maintaining individual services that are part of the cloud

• Keeping the cloud software up to date with new changes

• Supporting data migrations and other ‘on server’ (as opposed to ‘in application’) operations tasks

• Monitoring the status and availability of individual services and addressing issues

Skills and Technologies

• Familiarity with Python and ability to interpret Python tracebacks

• Familiarity with Linux system administration and management

• Experience with deploying and maintaining a cluster of servers hosting a web application which is dependent on
federated services

Expected to learn in the first 1-3 months of working on CommCare Cloud. Please note that the deployment of the local
system won’t be successful unless the team as a whole has experience or some level of comfort with these tools:

• Familiarity or capacity to learn the core components of a CommCare cloud + Web Proxy Server (nginx) +
SQL database (PostgreSQL) + Messaging queue (RabbitMQ) + Cache server (Redis) + Search index (Elastic-
search) + Object Storage (RiakCS) + Distributed Message Log (Kafka) + Distributed Configuration management
(Zookeeper)

• Familiarity with the frameworks relied upon by our operations tools + Ansible + Monit + Supervisor + EncryptFS
+ LVM

2.3. Roles And Responsibilities for Hosting CommCare 9

CommCareHQ Deployment

Sample Providers

“Managed Application Hosting”:

• Rackspace SAP Hosting

• IBM Managed Application Services

2.3.5 CommCare Application Administrator

Responsible for configuring CommCare HQ from inside of the web application.

Scope of Work

• User and application configuration

• Processing tech support direction when internal maintenance tools need to be run within the HQ web app

• Providing technical support for end users of the application

Skills and Technologies

• Familiarity with CommCare HQ

2.4 Hardware requirements and Deployment Options

2.4.1 Introduction

CommCare HQ is a complex software platform, composed of several parts (application builder, report builder,
databases, etc.). The architecture of CommCare HQ allows hosting for wide variety of usage loads. In this guide
we list down various server configurations suitable for various user loads to start with.

When determining what configuration to use, it is important to keep the expected growth of the project in mind, in
order to optimize costs and limit possible service interruptions due to server management operations. For example, if
there is a delay of days, weeks or months between the time when more resources are requested, and the time when they
becoming available, then it is better to have some buffer. Make sure there is more drive space, RAM, or cores than you
need, so that by the time the resources you are going to need have arrived, it is not too late.

Alternatively, if you are hosting on a platform where requisitioning resources is fast, or instant, buffer is less important,
and it would make more sense to optimise on resource costs.

Importantly, optimum resource management requires accurate resource monitoring. For more details on this topic, see
the CommCare Cloud documentation on label_datadog-for-monitoring.

10 Chapter 2. Prerequisites to Setup CommCare HQ in Production

CommCareHQ Deployment

2.4.2 Recommended Server Sizings for different loads

The following table summarizes common server configurations. This should provide a basic understanding of the
implications of scaling a project to several thousands of users.

Server
Config-
uration

Description Scal-
ability
(users)

Infras-
truc-
ture
Cost

Per-
son-
nel
Cost

Risks

Single
Server

A single server on which all the pieces of the
CommCare HQ software suite are installed.

< 1500 Low Medium No built in redun-
dancy. Difficult to
transition to larger
cluster

Micro
Cluster

Two servers running in parallel which provides
higher capacity than a single server as well as
better redundancy characteristics.

< 3500 Low Medium

Small
Cluster

A five-server cluster, which the parts of the
CommCare HQ software suite are distributed
across.

< 15K Medium High Complex setup requir-
ing more advanced
management

Large
Cluster

A cluster of more than five servers, which the
parts of the CommCare HQ software suite are
distributed across.

> 15K High Very
high

Very complex setup
and management

The number of users given in this table is a very rough guide. Every project is different: Some have many users, each
submitting a small number of forms. Some have few users submitting many forms. Some CommCare apps are simple,
and servers do not need to spend a lot of resources on syncing data and processing form submissions. Other apps are
complex, and the same number of users demand much more from the servers. Some apps are used via the web interface
exclusively, or have a lot more multimedia, or submit large form attachments, shifting requirements from some parts
of CommCare HQ to other parts.

The recommended starting point for a project which is starting with a small number of users but plans to scale beyond
1500 users, is the Micro Cluster configuration. It gives the best combination of scalability and cost.

By monitoring which services are using what resources, that data will determine how to grow the cluster. For practical
guidance on this topic, see the CommCare Cloud documentation on label_datadog-for-monitoring.

Virtualization
Where possible, virtual servers hosted by a Cloud Service Provider (CSP) should always be preferred over physical
servers. The reason for this is that it makes maintenance and scaling of the cluster much simpler. It is also generally
more cost effective as the utilization of the resources can be optimized and the burden of hardware management is
removed.

It is recommended that virtualization be seriously considered for any cluster that would require more than three physical
servers.

Adding virtualization to physical servers makes it possible to utilize the physical resources better, and makes certain
maintenance tasks simpler. However, installing and managing a virtualization layer requires highly skilled personnel.

2.4. Hardware requirements and Deployment Options 11

CommCareHQ Deployment

2.4.3 Single Server

This configuration is appropriate for projects with fewer than 1500 users, each user with an active case load of fewer
that 10,000 cases, and the project has no intention of growing.

Specific hardware guidelines can become outdated quickly. The following specifications might be a reasonable sug-
gestion:

• A mid-range server CPU

• At least 32 GB memory

• 2 TB SSD storage

Amazon EC2 t2.2xlarge and t3.2xlarge instances, configured with sufficient General Purpose EBS storage, meet these
CPU, memory and storage specifications.

It is important to note that these suggestions are not appropriate for all projects. Monitoring resource usage, and
adapting server resources accordingly, is crucial to meeting the needs of any project.

A Single Server configuration does not offer high availability. Server failures can take the environment offline. If
uptime is crucial for the project, this is not a good option; a Micro Cluster configuration would be more appropriate.

2.4.4 Micro Cluster

From a resource perspective, this configuration is two single servers. But it opens up possibilities for how the environ-
ment is configured: One server can be configured as fail-over for the services on the other server. This is important for
projects that need high availability. Alternatively, services can be balanced across both servers. If the project needs
the resources of both servers combined, this sacrifices high availability, but passes the initial hurdle to building a larger
cluster as a project grows.

This configuration is appropriate for small projects (projects with fewer than 1500 users, each user with an active case
load of fewer that 10,000 cases) that need high availability.

It is also appropriate as a starting configuration for small projects that intend to grow to medium-sized projects, because
it is more difficult to turn a Single Server configuration into a cluster than it is to extend a Micro Cluster configuration.

And it is appropriate for projects with fewer than about 3500 users.

Depending on the size of the project, this configuration has more range in terms of resource specification. For a small
project, without high availability, resources for each machine could be lower than for a Single Server configuration:

• A mid-range server CPU

• At least 16 GB memory

• 1 TB SSD storage

Amazon EC2 t2.xlarge and t3.xlarge instances, configured with sufficient General Purpose EBS storage, meet these
specifications.

For a small project which needs high availability, or for a medium-sized project, twice the requirements of the Single
Server configuration would be appropriate:

• A mid-range server CPU

• At least 32 GB memory

• 2 TB SSD storage

Amazon EC2 t2.2xlarge and t3.2xlarge instances, configured with sufficient General Purpose EBS storage, meet these
specifications.

12 Chapter 2. Prerequisites to Setup CommCare HQ in Production

CommCareHQ Deployment

2.4.5 Small Cluster

A five-server cluster may be appropriate for projects with up to about 15,000 users. By this point virtualization should
be considered mandatory, for the sake of scalability, and in order to optimize hardware resource usage.

If the size of the project allows, start with virtual machine instances that are not at the highest resource specification.
This allows for some buffer to scale vertically (in other words, add more resources to the same virtual machine) before
the necessity to scale horizontally (add more virtual machines).

Amazon EC2 t2.xlarge and t3.xlarge instances meet this description.

Storage requirements will be determined by the function of each server; proxy and web servers will require less storage,
database servers will require more.

The level of skills, and the number of personnel, required to manage a Small Cluster configuration are higher than for
a Single Server or a Micro Cluster.

2.4.6 Large Cluster

Depending on the nature of a project, typically as it approaches or surpasses 15,000 users, it will require a server cluster
of more than five servers.

Recommendations are the same as for a Small Cluster configuration:

• Allow some room to scale virtual machines vertically before needing to scale horizontally

• Monitoring is crucial, because decisions must be guided by data

The level of skills, and the number of personnel, required to manage a Large Cluster configuration are higher than for
a Small Cluster.

2.4.7 Running CommCare HQ inside Docker

Running CommCare HQ inside docker is currently not supported/optimized for production environments. However, it
is the recommended way to get the CommCare HQ ecosystem up and running for development purposes.

Running services inside containers requires additional resources to the base resource requirements for the ecosystem
running inside the container(s). The minimum resource requirements to run the CommCare HQ ecosystem with docker
is the following:

• CPU: 31.133% (on a single core)

• Memory: 5GB

However, it is recommended that your system have more resources than the above in order to do more than just “keep
the lights on”. The exact resource requirement is heavily dependend on your own system and you should use the above
only as a baseline.

2.4. Hardware requirements and Deployment Options 13

CommCareHQ Deployment

2.5 Managing Hardware and the Physical Environment

Dimagi recommends outsourcing the maintenance of hardware and the physical hosting environment to a cloud service
provider. For some projects, for a range of possible reasons or on balance of factors, that may not be desirable, or an
option.

2.5.1 Third-party documents

Perhaps the canonical document on managing hardware, within the wholistic context of managing a data center, is the
BICSI International Standard, ANSI/BICSI 002, Data Center Design and Implementation Best Practices. At the time
of writing, the latest revision is BICSI 002-2019. At 500 pages long, it is comprehensive. A digital copy costs $525.

Samples, and a presentation based on the content are available free online. The presentation will give a good impression
of the detailed thinking required to maintain a secure and reliable hosting environment.

2.5.2 Costs for maintaining a self-hosted production environment

These are long-term (year-over-year) costs that should be considered when determining the price of a “fixed cost”
option, where servers are procured specifically for the project.

Purchasing production server equipment is quite different from purchasing personal computing equipment. Since
servers will run continuously, and operations need to be available within predictable prices, server hardware cost is
built around warranty and license life-cycles for equipment, where the warranty will ensure that the hardware contin-
ues to deliver over the time period.

For this example, we will presume a representative 16-Core 64GB server with a base cost of about $5,000, which
generally fulfills the requirements of a monolith server. We will presume that the project will run for a five year period
for representative total costs.

Hardware Replacement and Warranty

The expected lifespan for reliable server equipment in a data center is 3-5 years, which depends on many factors but
can be lowered depending on the quality of power supplied and things like appropriate cooling and ventilation.

Traditionally a team without a significant stock of replacement components will purchase servers with a comprehensive
warranty plan with the expectation that they will purchase new equipment when the warranty expires.

“Next business day” (v. 24/7 which is more expensive) support for 3 and 5 years costs $900 and $3000 respectively,
making the year to year cost for the server:

Years in Service Base Warranty / Support Yearly Cost
3 $5000 $900 $1,966
5 $5000 $3000 $1,600

14 Chapter 2. Prerequisites to Setup CommCare HQ in Production

https://www.bicsi.org/standards/available-standards-store/single-purchase/ansi-bicsi-002-2019-data-center-design
https://www.bicsi.org/docs/default-source/conference-presentations/2017-fall/using-the-ansi-bicsi-002.pdf

CommCareHQ Deployment

Storage

When made available from a vendor, high durability block storage is made available at a fixed price. This storage
will be robust against failures in individual hardware disks transparently without intervention. Without high durability
storage, it should be expected that disk failure will result in the need to restore the system in full from backup (and with
the loss of data in between the backup) at least once in a three year period.

When block storage isn’t available, high durability storage must be created and maintained manually. This requires
available backup disks, a software or hardware SAN appliance to produce high durability virtual storage, and a main-
tenance plan for replacing disks urgently.

Hard drive warranties are generally around 3 years, and producing 1TB of storage would generally require purchasing
1.5TB worth of disks during that period, since 33% will be lost to the redundant storage layer, and 1 additional disk
needs to remain available to replace a faulted disk.

A 500GB server disk from HP is ~$300, making the year-to-year cost for 1TB of storage (including replacement) around
$300 per year (3 years per disk, 3 disks in use at once for 1TB of storage).

Disk Lifetime Cost Per Disk Disks per TB Yearly Cost per TB Cost per year1

3 $300 3 $300 $1500

Networking

It is critical for the security of the server that they be on an isolated network segment which is provided by hardware
with up-to-date firmware. Since network traffic will be directed inward to the data center from the external WAN
connection, out-of-date unsupported firmware is a critical security vulnerability.

An example would be a Dell Sonicwall Next Generation Firewalls (NGFW) gateway appliance, like a TZ300. These
networking appliances have an initial purchase cost and an ongoing licensing cost for keeping firmware up to date and
in-spec. Example costs are described below

Appliance Initial Purchase Cost Yearly License Cost
SonicWall TZ300 $625 $400

Monitoring

The IT administrator managing the system will require the ability to monitor the systems. For example, if hard drives
are configured in a RAID-10 configuration and a drive fails it is critical for an administrator to be notified immediately
to ensure the drive is replaced rapidly and the system is not at risk of data loss.

A standard on-premise tool for managing servers is Nagios, with cost details provided below

Appliance Initial Purchase Cost Yearly License Cost
Nagios $1,995 $1,695

1 The recommendation for a monolith is 1TB of storage per year of project. On flexible block storage, this cost could be calculated with storage
as needed (i.e. 1TB year 1, 2TB year 2, 3TB year 3, etc.), but with self-hosted RAID storage extending the storage volume requires new disks, which
is complex. A minimum cost would be 3TB for years 1, 2, and 3, then 5TB years 4 and 5, which would require a complex migration requiring subject
matter expertise.

2.5. Managing Hardware and the Physical Environment 15

CommCareHQ Deployment

Backups / Disaster Recovery

In addition to the primary production environment, there needs to be a location for backups to be stored, which will
require a second redundant system which may or may not already be available at the existing datacenter.

Prices for storing backups can vary dramatically based on the backup architecture, but the most basic back-of-envelope
costs would be to double the cost of storage (possibly with slower disks), if an existing system is available to host
backups. Alternatively a second, lower power host server can be procured as well.

Support Licenses

Cloud hosting data centers which are managing servers at the OS level will generally have licensed support for Operating
Systems. This support ensures that IT Admins are able to provide seamless uptime for servers and resolve critical issues
at the OS level if they occur.

Representative Yearly Costs

Taking into account the above, a reasonable estimate for a baseline yearly cost over a 5 year period would include the
following

Hardware Storage Networking Monitoring Yearly Monthly
$1,600 $1,500 $400 $1,695 $5,195 $433

Some of these costs may be shared between different server systems, reducing the monthly cost, which is how Cloud
providers are able to make these systems available more cheaply.

Due to the more complex pricing these costs do not include

• “One-time” costs for extra disks or initial purchases of Nagios/network appliances

• Backups

• Costs of maintenance

• Subject Matter Expert (SME) support for OS’s or services

• Costs to replicate Information Security Management (ISMS) protocols including Physical Access control and
regular auditing

All of which are important considerations for individual programs

2.6 Software and Tools requirements

A production grade CommCare HQ instance with all the features available requires good number of third-party soft-
ware. Below is a list of softwares and tools required to run an instance.

1. Ubuntu 22.04 Server as operating system on all environments.

2. CommCare Cloud Deployment Tool to deploy all the other services.

3. Email and SMS gateways for features related to Email and SMS to work.

4. sentry.io for error logging. If you would like to self host Sentry using commcare-cloud, see sentry-on-prem.

5. Datadog or Prometheus for monitoring and alerting.

6. Google Maps or Mapbox API keys if you are using features that use these APIs.

16 Chapter 2. Prerequisites to Setup CommCare HQ in Production

https://ubuntu.com/legal/ubuntu-advantage-service-description
https://ubuntu.com/legal/ubuntu-advantage-service-description
https://sentry.io

CommCareHQ Deployment

2.7 CommCare Cloud Deployment Tool

2.7.1 What is commcare-cloud?

commcare-cloud is a python-based command line tool that uses the open source technology Ansible to automate
everything you need in order to run a production CommCare cluster.

While it is possible to install on a laptop with a linux-like command line interface, it is primarily designed to be run on
the machine that is hosting CommCare. (If you are hosting CommCare on more than one machine, commcare-cloud
only needs to be installed on one of them.) In this documentation, we will call the machine on which commcare-cloud
is installed the “control machine”. If you are hosting CommCare on a single machine, that machine is also the control
machine.

For installation see Installation For list of available commands see cchq-commands

2.7.2 What is the Control Machine

The machine where commcare-cloud is installed is known as the control machine. It is a single machine where you
will be able to run any service checks, deploy code changes and update CommCare HQ code.

If you are running a monolith installation per Deploy CommCare HQ this will be the same machine that you installed
all the CommCare HQ services on.

We recommend that the control machine be in the same datacenter or network as the rest of your server fleet.

2.7.3 Setting up a control machine

1. Install commcare-cloud Installation on it.

2. Configure commcare-cloud with inventory.ini of your server fleet.

3. Update the known-hosts file to access all the servers by running .. code-block:: bash

$ commcare-cloud <env> update-local-known-hosts

2.7.4 User Management

User access to all machines on the fleet is managed through the control machine. User permissions are stored in the
_users and _authorized_keys directories in the environment.

See more about these files and how to update them in the _users section in environment documentation.

2.7.5 Accessing the control machine

Once users are correctly added, they should access the control machine with key-forwarding enabled from their own
computers. From a Unix machine:

$ ssh username@{control_machine IP} -A

If you are a Windows user using PuTTY to access the control machine, follow the instructions on this SuperUser answer
to enable key forwarding.

This will allow those users to subsequently ssh into any of the other machines in the fleet, and run any commcare-cloud
commands directly from the control machine.

2.7. CommCare Cloud Deployment Tool 17

https://superuser.com/a/878964

CommCareHQ Deployment

2.7.6 commcare-cloud reference

Check out CommCare Cloud Reference for more information on commcare-cloud.

18 Chapter 2. Prerequisites to Setup CommCare HQ in Production

CHAPTER

THREE

DEPLOY COMMCARE HQ

This section has details on the following topics.

• How to deploy a CommCare HQ instance on one or more servers (also referred as install sometimes).

• Import data if you are migrating from another existing instance such as Dimagi’s www.commcarehq.org or any
other using Migrate a Project from one instance to a new instance.

• A Go Live Checklist and basic QA tests to make sure everything is working well before making your instance
live to the public.

Once you have understood what deployment option is most suitable for you using Hardware requirements and Deploy-
ment Options guide and have all the prerequisites to deploy you can go ahead and deploy CommCare HQ! You can
follow one of the deployment guides below depending on the type of deployment option that’s suitable for you.

1. Quick Install on Single Server: This tutorial helps you install CommCare HQ on a single machine with an install
wizard. Most of the install is done automatically with configuration set to sensible defaults. This is useful to
quickly get started, test or preview what’s involved in a working CommCare HQ environment.

2. Install Using Commcare-Cloud on one or more machines: This tutorial helps you install CommCare HQ on
a single machine or a small cluster using CommCare Cloud Deployment Tool, the command-line tool used to
not only install CommCare HQ but also to manage a CommCare HQ instance through its entire life-cycle. This
method gives you more visibility into installation process, more control and configuration options suitable to your
own needs. This is the recommended way to setup a multi machine production grade CommCare HQ instance.

3.1 Quick Install on Single Server

This is a guide on how to deploy a CommCare HQ instance on a monolith server using an install script. Please refer to
Deploy CommCare HQ guide to decide if this is the right deployment method for you before proceeding.

3.1.1 Prerequisites

• A single Ubuntu 22.04 64-bit server

• Root user to SSH into the server

• git must be installed on the server. If not, please use https://github.com/git-guides/install-git#debianubuntu to
install git

• We recommend using Python 3.10 with commcare-cloud. Follow instructions at https://commcare-cloud.
readthedocs.io/en/latest/installation/2-manual-install.html#upgrade-to-python-3-10 to upgrade.

19

https://github.com/git-guides/install-git#debianubuntu
https://commcare-cloud.readthedocs.io/en/latest/installation/2-manual-install.html#upgrade-to-python-3-10
https://commcare-cloud.readthedocs.io/en/latest/installation/2-manual-install.html#upgrade-to-python-3-10

CommCareHQ Deployment

3.1.2 Installation Steps

SSH into the server with a root or a user with root privileges, and follow the steps below.

1. Download the commcare-cloud repository.

git clone https://github.com/dimagi/commcare-cloud

2. Change into the install directory and populate the config file.

cd commcare-cloud/quick_monolith_install
copy the sample config file
cp install-config.yml.sample install-config.yml
fill the config and save
vim install-config.yml

3. Run the installation script. (You may be prompted for sudo password)

bash cchq-install.sh install-config.yml

3.1.3 Post Installation and Server Administration

Tracking environments directory

On successful installation, the script creates an environments config directory under ~/environments that stores all
of the configuration. We recommend that you track this via a version control system such as git. This way you can
track changes, and share the directory with other team members who may need to perform server administration using
commcare-cloud.

Note: You do not need to track install-config.yml in git as it’s only relevant for this installation.

Running commcare-cloud commands

Note that to run any commcare-cloud commands after quick-install you need to login to the VM as either the
ssh_username configured under install-config.yml or as the ansible user.

If you wish to let other team members run commcare-cloud commands, you can refer to User Access Management.

Once you have installed CommCare HQ successfully you can refer to First Steps with CommCare HQ before making
your CommCare HQ instance live.

3.1.4 Troubleshooting

The cchq-install.sh is an automation of the manual steps listed in Install Using Commcare-Cloud on one or
more machines. If this script fails before it executes commcare-cloud $env_name deploy-stack --skip-check
--skip-tags=users -e 'CCHQ_IS_FRESH_INSTALL=1' -c local --quiet, you may rerun the script itself. If
the script fails at this or latter commands, you can run those commands one after another instead of re-running the
enitre cchq-install.sh script to save time. Below are the rest of the commands.

To run the commands below, you need to SSH into the machine as the user added earlier or as ansible user.

20 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

$env_name is the name of your environment
commcare-cloud $env_name deploy-stack --skip-check --skip-tags=users -e 'CCHQ_IS_FRESH_
→˓INSTALL=1' -c local --quiet
commcare-cloud $env_name django-manage create_kafka_topics
commcare-cloud $env_name django-manage preindex_everything
commcare-cloud $env_name deploy

If you have any issues while deploying please refer to Troubleshooting first time setup.

3.2 Install Using Commcare-Cloud on one or more machines

This tutorial will walk you through the process of setting up a new environment to run CommCare HQ using commcare-
cloud. It covers both a single-server (“monolith”) environment and a small cluster of virtual machines. If you want to
quickly test or preview the environment setup on a single machine you can follow Quick Install on Single Server which
uses a script to automate all of the below.

This assumes you have gone through Deploy CommCare HQ which details what all you need to know to deploy Comm-
Care HQ in production.

3.2.1 Procure Hardware

The first step is to procure the hardware required to run CommCare HQ to meet your project requirements. To under-
stand the hardware resources required for your project please see Hardware requirements and Deployment Options.
Below are configurations used for the purpose of the tutorial.

Single server

When CommCare HQ is running on a single server, this configuration is referred to as a “monolith”. A monolith will
need an absolute minimum of:

• 4 CPU cores

• 16 GB RAM

• 40 GB storage

These resources are only sufficient to run a demo of CommCare HQ. Any production environment will need a lot more
resources.

If you are using VirtualBox for testing CommCare HQ, you can follow the instructions on Configuring VirtualBox for
testing CommCare HQ.

Cluster

The following example uses a cluster of similarly resourced virtual machines. Let us assume that we have estimated
that the following will meet the requirements of our project:

3.2. Install Using Commcare-Cloud on one or more machines 21

CommCareHQ Deployment

Hostname vCPUs RAM Storage
control1 2 4 GB 30 GB
proxy1 2 4 GB 30 GB
webworker1 2 8 GB 30 GB
webworker2 2 8 GB 30 GB
db1 2 16 GB 30 GB + 60 GB
db2 2 16 GB 30 GB + 60 GB + 20 GB

db1 has an extra volume for databases. db2 has one extra volume for databases, and another for a shared NFS volume.

All environments

CommCare HQ environments run on Ubuntu Server 22.04 (64-bit).

During the installation of Ubuntu you will be prompted for the details of the first user, who will have sudo access. It is
convenient to name the user “ansible”. (The user can be named something else. Deploying CommCare HQ will create
an “ansible” user if one does not already exist.)

When choosing which software to install during the Ubuntu installation, select only “SSH Server”.

You will need a domain name which directs to the monolith or the cluster’s proxy server.

3.2.2 Prepare all machines for automated deploy

Do the following on the monolith, or on each machine in the cluster.

Enable root login via SSH

On a standard Ubuntu install, the root user is not enabled or allowed to SSH. The root user will only be used initially,
and will then be disabled automatically by the install scripts.

Make a root password and store it somewhere safe for later reference.

1. Set the root password:

$ sudo passwd root

2. Enable the root user:

$ sudo passwd -u root

3. Edit /etc/ssh/sshd_config:

$ sudo nano /etc/ssh/sshd_config

To allow logging in as root, set

PermitRootLogin yes

To allow password authentication, ensure

PasswordAuthentication yes

22 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

4. Restart SSH:

$ sudo service ssh reload

Initialize log file

To be used in the installation process.

$ sudo touch /var/log/ansible.log
$ sudo chmod 666 /var/log/ansible.log

Install system dependencies

This only needs to be done on the control machine. In the case of a monolith, there is only one machine to manage so
that is also the control machine. In our example cluster, the control machine is named “control1”.

1. SSH into control1 as the “ansible” user, or the user you created during installation. You can skip this step if you
are installing a monolith:

$ ssh ansible@control1

This instruction assumes that the control machine’s name resolves to its IP address. Replace the name with the
IP address if necessary.

2. On the control machine, or the monolith, install required packages:

$ sudo apt update
$ sudo apt install python3-pip python3-dev python3-distutils python3-venv libffi-
→˓dev sshpass net-tools

3. Check your default Python version for Python 3.x:

$ python --version

If your default version is not 3.x or if the “python” command was not found, make python3 your default by
running the command below, otherwise skip it.

$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 10

3.2.3 Create a user for yourself

In general, CommCare environments are managed by a team. Each member of the team has their own user account.

On the control machine or the monolith, create a user for yourself, and add them to the “sudo” user group. For example,
if your username were “jbloggs”, the commands would be

$ sudo adduser jbloggs
...
$ sudo usermod -a -G sudo jbloggs

3.2. Install Using Commcare-Cloud on one or more machines 23

CommCareHQ Deployment

3.2.4 Configure SSH

If you do not have an SSH key pair already, you will need to create one. (Substitute “jbloggs@example.com” with your
email address)

$ ssh-keygen -t rsa -b 4096 -C "jbloggs@example.com"

Cluster only: Copy an SSH key pair for your user to the control machine. For example, if the key pair you want to
copy is ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub, then the commands to copy the SSH key pair would be

$ ssh-copy-id -i ~/.ssh/id_rsa.pub jbloggs@control1
$ scp ~/.ssh/id_rsa{,.pub} control1:.ssh/

You can now log in using your SSH key:

(jbloggs@jbloggs-pc) $ ssh control1

3.2.5 Install CommCare Cloud

1. On the control machine or the monolith, install and configure Git:

$ sudo apt install git
$ git config --global user.name "Jay Bloggs"
$ git config --global user.email "jbloggs@example.com"

(Of course, substitute “Jay Bloggs” with your name, and “jbloggs@example.com” with your email address.)

2. Clone and initialize CommCare Cloud:

$ git clone https://github.com/dimagi/commcare-cloud.git
$ cd commcare-cloud
$ source control/init.sh

When prompted, confirm setting up the CommCare Cloud environment on login:

Do you want to have the CommCare Cloud environment setup on login?
(y/n): y

3. Clone the sample CommCare Cloud “environments” folder into your home directory.

$ cd ~
$ git clone https://github.com/dimagi/sample-environment.git environments

4. Rename your environment. You could name it after your organization or your project. If you are installing a
monolith you could leave its name as “monolith”. For this example we will name it “cluster”.

$ cd environments
$ git mv monolith cluster
$ git commit -m "Renamed environment"

5. Remove the “origin” Git remote. (You will not be pushing your changes back to the Dimagi “sample-
environment” repository.)

$ git remote remove origin

24 Chapter 3. Deploy CommCare HQ

mailto:jbloggs@example.com
mailto:jbloggs@example.com

CommCareHQ Deployment

6. (Optional) You are encouraged to add a remote for your own Git repository, so that you can share and track
changes to your environment’s configuration. For example:

$ git remote add origin git@github.com:your-organization/commcare-environment.git

7. Configure your CommCare environment.

See Configuring your CommCare Cloud Environments Directory for more information.

8. Add your username to the present section of ~/environments/_users/admins.yml.

$ nano ~/environments/_users/admins.yml

9. Copy your public key to ~/environments/_authorized_keys/. The filename must correspond to your user-
name.

For example:

$ cp ~/.ssh/id_rsa.pub ~/environments/_authorized_keys/$(whoami).pub

10. Change “monolith.commcarehq.test” to your real domain name,

$ cd cluster

(or whatever you named your environment, if not “cluster”.)

$ git grep -n "monolith"

You should find references in the following files and places:

• proxy.yml

– SITE_HOST

• public.yml

– ALLOWED_HOSTS

– server_email

– default_from_email

– root_email

11. Configure inventory.ini

For a monolith

1. Find the name and IP address of the network interface of your machine, and note it down. You can do this
by running

$ ip addr

This will give an output that looks similar to

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group␣
→˓default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

(continues on next page)

3.2. Install Using Commcare-Cloud on one or more machines 25

CommCareHQ Deployment

(continued from previous page)

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP␣
→˓group default qlen 1000

link/ether 08:00:27:48:f5:64 brd ff:ff:ff:ff:ff:ff
inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3

valid_lft 85228sec preferred_lft 85228sec
inet6 fe80::a00:27ff:fe48:f564/64 scope link

valid_lft forever preferred_lft forever

Here, the network interface we are interested in is enp0s3, which has an IP address of 10.0.2.15. Note
this address down.

2. Open your environment’s inventory.ini file in an editor. (Substitute “cluster”.)

$ nano ~/environments/cluster/inventory.ini

Replace the word localhost with the IP address you found in the previous step.

Uncomment and set the value of ufw_private_interface to the network interface of your machine.

For a cluster

Having planned and provisioned the virtual machines in your cluster, you will already know their hostnames and
IP addresses.

The following is an example of an inventory.ini file for a small cluster. Use it as a template for your environ-
ment’s inventory.ini file:

[proxy1]
192.168.122.2 hostname=proxy1 ufw_private_interface=enp1s0

[control1]
192.168.122.3 hostname=control1 ufw_private_interface=enp1s0

[webworker1]
192.168.122.4 hostname=webworker1 ufw_private_interface=enp1s0

[webworker2]
192.168.122.5 hostname=webworker1 ufw_private_interface=enp1s0

[db1]
192.168.122.4 hostname=db1 ufw_private_interface=enp1s0 elasticsearch_node_name=es0␣
→˓kafka_broker_id=0

[db2]
192.168.122.5 hostname=db1 ufw_private_interface=enp1s0 elasticsearch_node_name=es1␣
→˓kafka_broker_id=1

[control:children]
control1

(continues on next page)

26 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

(continued from previous page)

[proxy:children]
proxy1

[webworkers:children]
webworker1
webworker2

[celery:children]
webworker1
webworker2

[pillowtop:children]
webworker1
webworker2

[django_manage:children]
webworker1

[formplayer:children]
webworker2

[rabbitmq:children]
webworker1

[postgresql:children]
db1
db2

[pg_backup:children]
db1
db2

[pg_standby]

[couchdb2:children]
db1
db2

[couchdb2_proxy:children]
db1

[shared_dir_host:children]
db2

[redis:children]
db1
db2

[zookeeper:children]
db1
db2

(continues on next page)

3.2. Install Using Commcare-Cloud on one or more machines 27

CommCareHQ Deployment

(continued from previous page)

[kafka:children]
db1
db2

[elasticsearch:children]
db1
db2

12. Configure the commcare-cloud command.

$ export COMMCARE_CLOUD_ENVIRONMENTS=$HOME/environments
$ manage-commcare-cloud configure

You will see a few prompts that will guide you through the installation. Answer the questions as follows for a
standard installation. (Of course, substitute “jbloggs” with your username, and “cluster” with the name of your
environment.)

Do you work or contract for Dimagi? [y/N] n

I see you have COMMCARE_CLOUD_ENVIRONMENTS set to /home/jbloggs/environments in␣
→˓your environment
Would you like to use environments at that location? [y/N] y

As prompted, add the commcare-cloud config to your profile to set the correct paths:

$ echo "source ~/.commcare-cloud/load_config.sh" >> ~/.profile

Load the commcare-cloud config so it takes effect immediately:

$ source ~/.commcare-cloud/load_config.sh

Copy the example config file:

$ cp ~/commcare-cloud/src/commcare_cloud/config.example.py ~/commcare-cloud/src/
→˓commcare_cloud/config.py

Update the known hosts file

$ commcare-cloud cluster update-local-known-hosts

13. Generate secured passwords for the vault

In this step, we’ll generate passwords in the vault.yml file. This file will store all the passwords used in this
CommCare environment. (Once again, substitute “cluster” with the name of your environment.)

$ python ~/commcare-cloud/commcare-cloud-bootstrap/generate_vault_passwords.py --
→˓env='cluster'

Before we encrypt the vault.yml file, have a look at the vault.yml file. (Substitute “cluster”.)

$ cat ~/environments/cluster/vault.yml

Find the value of “ansible_sudo_pass” and record it in your password manager. We will need this to deploy
CommCare HQ.

28 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

14. Encrypt the provided vault file, using that “ansible_sudo_pass”. (As usual, substitute “cluster” with the name of
your environment.)

$ ansible-vault encrypt ~/environments/cluster/vault.yml

More information on Ansible Vault can be found in the Ansible help pages.

Managing secrets with Vault will tell you more about how we use this vault file.

3.2.6 Deploy CommCare HQ services

You will need the SSH agent to have your SSH key for Ansible.

$ eval `ssh-agent`
$ ssh-add ~/.ssh/id_rsa

When you run the “commcare-cloud deploy-stack”, you will be prompted for the vault password from earlier. You will
also be prompted for an SSH password. This is the root user’s password. After this step, the root user will not be able
to log in via SSH.

$ commcare-cloud cluster deploy-stack --first-time -e 'CCHQ_IS_FRESH_INSTALL=1'

This command will apply without running the check first. Continue? [y/N]y
ansible-playbook /home/jbloggs/commcare-cloud/src/commcare_cloud/ansible/deploy_stack.
→˓yml -i /home/jbloggs/environments/cluster/inventory.ini -e @/home/jbloggs/environments/
→˓cluster/vault.yml -e @/home/jbloggs/environments/cluster/public.yml -e @/home/jbloggs/
→˓environments/cluster/.generated.yml --diff --tags=bootstrap-users -u root --ask-pass --
→˓vault-password-file=/home/jbloggs/commcare-cloud/src/commcare_cloud/ansible/echo_vault_
→˓password.sh --ask-pass --ssh-common-args -o=UserKnownHostsFile=/home/jbloggs/
→˓environments/cluster/known_hosts
Vault Password for 'cluster': <ansible_sudo_pass>
SSH password: <root user's password>

This will run a series of Ansible commands that will take quite a long time to run.

If there are failures during the install, which may happen due to timing issues, you can continue running the playbook
with:

$ commcare-cloud cluster deploy-stack --skip-check -e 'CCHQ_IS_FRESH_INSTALL=1'

3.2.7 Deploy CommCare HQ code

Deploying CommCare HQ code for the first time needs a few things set up initially.

1. Create Kafka topics:

$ commcare-cloud cluster django-manage create_kafka_topics

2. Create the CouchDB and Elasticsearch indices:

$ commcare-cloud cluster django-manage preindex_everything

3. Run the “deploy” command:

3.2. Install Using Commcare-Cloud on one or more machines 29

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/ansible/README.md#managing-secrets-with-vault

CommCareHQ Deployment

$ commcare-cloud cluster deploy

Or if you need to deploy a specific version of CommCare HQ as opposed to the latest:

$ commcare-cloud cluster deploy --commcare-rev=<commit-hash>

When prompted for the sudo password, enter the “ansible_sudo_pass” value.

See the Deploying CommCare HQ code changes section in Managing The Deployment for more information.

If deploy fails, you can restart where it left off:

$ commcare-cloud cluster deploy --resume

3.2.8 Set up valid SSL certificates

1. Run the playbook to request a Let’s Encrypt certificate:

$ commcare-cloud cluster ansible-playbook letsencrypt_cert.yml --skip-check

2. Update settings to take advantage of new certs:

$ nano $COMMCARE_CLOUD_ENVIRONMENTS/cluster/proxy.yml

and set fake_ssl_cert to False

3. Deploy proxy again

$ commcare-cloud cluster ansible-playbook deploy_proxy.yml --skip-check

3.2.9 Clean up

CommCare Cloud will no longer need the root user to be accessible via the password. The password can be removed
if you wish, using

$ sudo passwd -d -l root

3.2.10 Test and access CommCare HQ

Testing your new CommCare Environment

Run the following command to test each of the backing services as described ‘Checking services once deploy is com-
plete’ section in Managing The Deployment.

$ commcare-cloud cluster django-manage check_services

Following this initial setup, it is also recommended that you go through this Testing your new CommCare Environment,
which will exercise a wide variety of site functionality.

30 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

Accessing CommCare HQ from a browser

If everything went well, you should now be able to access CommCare HQ from a browser.

If you are using VirtualBox, see Configuring VirtualBox for testing CommCare HQ to find the URL to use in your
browser.

Troubleshooting first-time setup

If you face any issues, it is recommended to review the Troubleshooting first time setup documentation.

Firefighting issues once CommCare HQ is running

You may also wish to look at the firefighting page which lists out common issues that commcare-cloud can resolve.

If you ever reboot this machine, make sure to follow the after reboot procedure in the firefighting doc to bring all the
services back up, and mount the encrypted drive by running:

$ commcare-cloud cluster after-reboot all

3.2.11 First Steps with CommCare HQ

If you are migrating data you can refer to Migrate a Project from one instance to a new instance or Migrating an entire
CommCare HQ instance. Otherwise, you can do below to start using CommCare HQ.

Make a user

If you are following this process, we assume you have some knowledge of CommCare HQ and may already have data
you want to migrate to your new cluster. By default, the deploy scripts will be in Enterprise mode, which means
there is no sign up screen. You can change this and other settings in the localsettings file by following the localsettings
deploy instructions in Managing The Deployment.

If you want to leave this setting as is, you can make a superuser with:

$ commcare-cloud cluster django-manage make_superuser {email}

where {email} is the email address you would like to use as the username.

Note that promoting a user to superuser status using this command will also give them the ability to assign other users
as superuser in the in-app Superuser Management page.

Add a new CommCare build

In order to create new versions of applications created in the CommCare HQ app builder, you will need to add the the
latest CommCare Mobile and CommCare Core builds to your server. You can do this by running the command below
- it will fetch the latest version from GitHub.

$ commcare-cloud cluster django-manage add_commcare_build --latest

3.2. Install Using Commcare-Cloud on one or more machines 31

CommCareHQ Deployment

Link to a project on other CommCare HQ instance

If you intend to use Linked Projects feature to link projects on between two different instances of CommCare HQ, you
may refer to Remote Linked Projects to set this up.

3.2.12 Operations

Once you have your CommCare HQ live, please refer to Operations and maintenance for maintaining your environment.

To add new server administrators please refer to Setting up CommCare HQ Server Administrators.

3.3 Troubleshooting first time setup

3.3.1 My site is showing “Internal Server Error”

If you are seeing a blank screen with just the words “Internal Server Error” on it, it means that the django webworker
process is not reporting as “down”, but still failing to bootstrap fully. (If you are seeing a more elaborate 500 page, then
that is an issue with a single request, but ususally does not indicate a more pervasive problem with the site’s ability
to receive and handle requests in general.) Often this is because it is unable to connect to a backing service (such as
CouchDB, Redis, PostgreSQL, PgBouncer, Elasticsearch, Riak). This in turn can fall into a number of categories of
issue:

1. the service is down

2. the service is up, but unreachable due to network configuration

3. the service is up and reachable, but is blocking the connection for a permissions-related reason (auth is wrong,
IP is not whitelisted, etc.)

4. the service is up, reachable, and accepting the connection, but is failing due to other problems such as miscon-
figuration (e.g. a low max connection limit), or other problem such as out of memory errors.

Further diagnosis

You can start by simply checking which of the backing services the application code is able to connect to by running

commcare-cloud <env> django-manage check_services

Note that this checks the availability of each service to the application code, so it could be any type of problem given
in 1-4 above.

Steps to fix

If a stack trace you find in the logs points at a service being down, you can check its status and start it if it’s stopped or
restart it if it’s “up” but causing problems. In the command below replace the word “postgresql” with the name of the
service at issue:

commcare-cloud <env> service postgresql status
commcare-cloud <env> service postgresql start # to start it or
commcare-cloud <env> service postgresql restart # to restart it

32 Chapter 3. Deploy CommCare HQ

https://confluence.dimagi.com/display/commcarepublic/Linked+Project+Spaces
https://commcare-hq.readthedocs.io/linked_projects.html

CommCareHQ Deployment

Digging into the problem

If that doesn’t fix it, you will need to dig a bit deeper.

Start by checking which of the application services are reporting as up by running

commcare-cloud <env> service commcare status

You will likely find the django process is reporting as RUNNING. Some other processes if affected by a similar issue
may (or may not) be reporting as FATAL “exited too quickly”.

To dig into a particular error, you can log into the machine and tail one of the logs:

commcare-cloud <env> ssh webworkers[0]
$ tail -n100 /home/cchq/www/<env>/log/django.log

or, if you do not want to figure out where a particular log lives, you can run the command on all machines (allowing
that it’ll fail on any machine that doesn’t contain that particular log):

commcare-cloud <env> run-shell-command all 'tail -n100 /home/cchq/www/<env>/log/django.
→˓log'

or, you can use the output from the status command above and run it through the supervisorctl command:

commcare-cloud <env> ssh <machine>
$ sudo supervisorctl tail -f <supervisor process name>

3.3.2 One of the setup commands is showing. . .

RequestError: socket.error: [Errno 111] Connection refused

This means that CouchDB is unreachable.

Breakdown of a request to CouchDB

Note: if you are running on a recommended single-machine setup, then you can ignore the host groups (denoted [in
brackets]): all services will be running on the same machine.

Requests to CouchDB are made over HTTP, and are normally routed the following way:

1. They start at the originator of the request, such as a Django web worker

2. They are made to port 25984 on host [couchdb_proxy], which is served by the nginx web server, acting as a
load balancer.

3. nginx passes them through to one of the couchdb2 nodes (or the couchdb2 node if you have only one), which
handles the requests.

[webworkers] [couchdb2_proxy] [couchdb2]
django --> nginx --------> couchdb2

port 25984 port 15984

The following table represents the general case and includes variables that may be overriding the default port values:

3.3. Troubleshooting first time setup 33

CommCareHQ Deployment

host group service port (default value) port (variable name)
Originator various various

CouchDB Load Balancer [couchdb2_proxy] nginx 25984 couchdb2_proxy_port

CouchDB Node [couchdb2] couchdb2 15984 couchdb2_port

How to confirm the issue

To confirm the issue, that django processes cannot reach CouchDB, run

commcare-cloud <env> django-manage check_services couch

It should tell you that CouchDB is unreachable.

How to solve

The first thing to check is whether couchdb2 and couchdb2_proxy services are up, which you can do with the single
command:

commcare-cloud <env> service couchdb2 status

If one of the services is reporting down, you can use the following to start it:

Start both
commcare-cloud <env> service couchdb2 start

or start only couchdb2
commcare-cloud <env> service couchdb2 start --only couchdb2

or start only couchdb2_proxy
commcare-cloud <env> service couchdb2 start couchdb2_proxy

If CouchDB is still unreachable, try hitting each of the individual parts.

1. Test whether couchdb2 is responding .. code-block:: bash

commcare-cloud <env> ssh couchdb2 curl <couchdb2-internal-IP-address>:15984

2. Test whether the load balancer on couchdb2_proxy is responding .. code-block:: bash

commcare-cloud <env> ssh couchdb2_proxy curl <couchdb2_proxy-internal-IP-address>:25984

Notes:

• You will often see the value for <couchdb2-internal-IP-address> printed out next to eth0 upon sshing
into the machine.

• For a single-machine setup, no need to separately ssh for each step.

34 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

Is the CouchDB nginx site on couchdb2_proxy enabled?

commcare-cloud <env> ssh ansible@couchdb2_proxy
ls /etc/nginx/sites-enabled

This should contain a file with “couchdb” in the name.

Are there errors in the couchdb2 logs?

commcare-cloud <env> ssh ansible@couchdb2
ls /usr/local/couchdb2/couchdb/var/log/

There should be some logs in there that you can tail or grep through for errors.

3.3.3 One of the setup commands is showing. . .

`Error requesting archive. Problem with NPM phantomjs package downloading and path not
found`

ErrorMessage:
Status: 404
Request options: {

“url”: “https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-1.9.8-linux-x86_64.
→˓tar.bz2”

“encoding”: null,
“followRedirect”: true,
“headers”: {},
“strictSSL”: true

}

steps to resolve

cd /usr/local/share
sudo wget https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-1.9.8-linux-x86_64.
→˓tar.bz2
sudo tar xjf phantomjs-1.9.8-linux-x86_64.tar.bz2
sudo ln -s /usr/local/share/phantomjs-1.9.8-linux-x86_64/bin/phantomjs /usr/local/share/
→˓phantomjs
sudo ln -s /usr/local/share/phantomjs-1.9.8-linux-x86_64/bin/phantomjs /usr/local/bin/
→˓phantomjs
sudo ln -s /usr/local/share/phantomjs-1.9.8-linux-x86_64/bin/phantomjs /usr/bin/phantomjs

3.3. Troubleshooting first time setup 35

CommCareHQ Deployment

3.4 Testing your new CommCare Environment

This document can be used to ensure that your self-hosted CommCare environment is working as expected by running
through key CommCare HQ processes. We’ll go through these routines and processes step-by-step and when complete,
you can be confident that your CommCare instance is set up correctly. In total, this plan will take about one hour to
execute.

If any of these steps fail, we advise troubleshooting by first evaluating the related processes detailed at the end of each
step. You’ll find some specifics on the Firefighting Production Issues.

3.4.1 Step 1: Logging in

Simply logging into CommCare HQ tests multiple processes.

Begin by logging into your application with your username and password.

This step tests: that Django, Postgres, Couch, and Redis are functional. Furthermore, it ensures that staticfiles are
being served correctly.

36 Chapter 3. Deploy CommCare HQ

./images/log-in.png

CommCareHQ Deployment

3.4.2 Step 2a: Creating an application

In this step, we will create a basic Case Management app, populate it with questions and add case properties.

We’ll create an application by selecting either of the Application links from the Dashboard page; the Dashboard page
is the landing page post login. There is one Application link on the top ribbon and another in the box on the screen
with a phone icon.

You’ll be brought to the page below. Give your app a name and click the ‘+Add’ button. Choose the option ‘Case List’
to create an application that uses Case Management. We’ll use case management to create cases later on.

3.4.3 Step 2b: Populating the Registration Form

The previous step will create two forms under your case list and you’ll be navigated to a page called the ‘Formbuilder.’
You can populate these forms with questions by selecting the purple ‘+Add Question’ button. Let’s start by populating
the Registration Form with a few questions. Feel free to use the template I’ve included in the image below or create
your own questions. If using your own questions, do use one text question to capture names so we can easily refer to
our cases later.

Once questions have been added, save and then click the ‘Manage Case’ button at the top right of the screen. This will
navigate to the Registration Form’s Case Management tab.

3.4. Testing your new CommCare Environment 37

./images/add-module.png
./images/registration-form.png

CommCareHQ Deployment

3.4.4 Step 2c: Saving Case Properties

In this section, add your questions as Case Properties by selecting them in the dropdowns under the ‘Save Questions
to Case Properties’ section. Saving a question as a Case Property will allow that information to be associated with the
case. We’ll follow up on these case properties later once we begin using our app.

3.4.5 Step 2d: Populating and creating properties for the Followup Form

Repeat this process with the Followup Form. You can click on the ‘Followup Form’ text on the left of the screen and
this will navigate you back to the Formbuilder. Again, add a few questions of your own, or use my template below.
Once complete, save and select ‘Manage Case.’ Then, add those questions as Case Properties and save again.

These steps test: that Applications can be created. Applications are the core of how CommCare works and will be
used to collect data for your project. The App Building process also validates that Formplayer is functional.

To further validate Formplayer, click the teal bar on the right of the screen, this will open a tool called Application
Preview. If Formplayer isn’t running or isn’t connected properly, the Application Preview pane will be blank.

38 Chapter 3. Deploy CommCare HQ

./images/case-properties.png
./images/followup-form.png
https://confluence.dimagi.com/display/commcarepublic/Application+Preview
https://confluence.dimagi.com/display/commcarepublic/Application+Preview

CommCareHQ Deployment

3.4.6 Step 3: Creating a mobile worker

We’ll create a mobile worker to access our application and submit data. To do so, select Users from the top ribbon and
click Mobile Workers. A new page should load and you should then see a blue button ‘+Create Mobile Worker,’ click
this and the popup below will appear. Enter whatever username and password combo you’d like.

Your mobile worker should now appear as a link under the ‘New Mobile Workers’ section.

This step tests: Creating a mobile worker and validating a phone number. The page that lists mobile workers relies on
Elasticsearch.

3.4.7 Step 4a: Deploying your application and submitting forms from mobile

Note: You may skip this step if your project intends to use only Web Apps for data collection.

Now that we’ve built an app, we’ll validate its deploy. In the top ribbon, select Applications and click your newly
created test application. This will navigate you to the Releases page. Click the blue ‘Make New Version’ button and
within a few moments, a version will be available.

Before proceeding, you’ll need an Android device with the CommCare mobile app installed. If you do not have Comm-
Care installed on your device, first go to the Play Store and download it.

On the ‘Releases’ page, click the ‘Publish’ button with your newly created version. This will launch a modal similar to
the one in the image below. Your version number may differ from mine:

3.4. Testing your new CommCare Environment 39

./images/mobile-worker.png

CommCareHQ Deployment

While there are multiple ways to deploy your application to a mobile device, choose ‘Scan Application Barcode’ to
display a QR code. On your mobile device, press ‘Scan Application Barcode’ to install your application. This should
only take a few moments and when complete, you will be able to log in on your mobile device with the mobile worker
created in the previous step.

Remaining on your mobile device, access and submit your registration form to create a case and then the followup form
to add additional properties to that case. We’ll verify this case was successfully created in CommCare HQ shortly.
After submitting both the Registration and Followup form, press the blue ‘Sync with Server’ button on the CommCare
mobile app’s home screen. This will ensure the forms on your device are pushed to CommCare HQ.

This step tests: When you attempt to build the app, you may see an error “Unable to validate form”, this likely indicates
that Formplayer isn’t running or isn’t connected properly to CommCare HQ. The act of logging in on your mobile device
for the first time automatically syncs with the server. Logging in validates that mobile devices are able to connect with
the server.

40 Chapter 3. Deploy CommCare HQ

./images/download-app.png

CommCareHQ Deployment

3.4.8 Step 4b: Submitting forms through Web Apps

‘Web Apps’ is a method of submitting data to CommCare HQ online and with a desktop or laptop. Web Apps must be
enabled separately under your application’s Advanced Settings. Return to CommCare HQ and then click the gear icon
next to your application’s name. Next, click ‘Advanced Settings’ to enable Web Apps and save. Upon completing this
step, a purple banner will appear under your application’s name.

We will need to make a new version of your application on the release page. To do so, click your application’s name and
the ‘Make New Version’ button. On this newly created version, it’s important to toggle the ‘Released/In Test’ button to
‘Released.’

After marking your version as released, click ‘Web Apps’ in the top ribbon of CommCare HQ. There, you’ll notice
a purple button labeled, ‘Login As.’ Click that and choose your Mobile Worker. While you can submit forms as a
Web User (your CommCare HQ login), most CommCare users structure their apps around submissions from Mobile
Workers. Using ‘Login As’ allows you to submit forms as a mobile worker via Web Apps.

Click on your application and submit the registration and follow-up forms. Once the forms have been submitted, click
the Home icon in Web Apps and then click the blue Sync button.

This step tests: Using Web Apps tests that Formplayer is working correctly. We will know whether our submission
was a success when we check reports in the next step.

3.4. Testing your new CommCare Environment 41

./images/advanced-settings.png
./images/web-apps.png

CommCareHQ Deployment

3.4.9 Step 5: Viewing submitted data in reports

In this step, we will run a few key CommCare HQ reports to ensure data was received and accessible.

We’ve now submitted data from either a mobile device, Web Apps or both. Let’s now view this data in CommCare
HQ. If still in Web Apps, click ‘Show Full Menu’ at the top of the screen to view the ribbon. Otherwise, simply access
CommCare HQ and click ‘Reports’, then ‘Submit History.’

On the Submit History report, simply accept the defaults and click the blue Apply button. You’ll be shown all the forms
submitted for your project along with some key pieces of information about those forms. To further test reports, access
the Case List report (it should be directly under Submit History on the left of the screen). Again, accept the default
filters and click apply.

Your results will be unique to your submissions and cases. Feel free to explore these reports further by clicking either
‘View Form’ or the name of the case.

This step tests: That forms were processed and then picked up by Pillowtop and transferred to the appropriate database.
The report’s list uses Elasticsearch and its detail use PSQL.

3.4.10 Step 6a: Exporting CommCare Data: Case Export

CommCare HQ offers multiple ways to retrieve and export your data. This section will highlight two of these methods;
a standard case export and the creation of an OData feed, which can be used to hook up CommCare HQ to Tableau and
Power BI.

A standard case export can be done by clicking ‘Data’ from the top ribbon on CommCare HQ and choosing ‘Export
Case Data.’ Then, click the ‘+Add Export’ button and define the Application and Case Type in the modal that appears.
Though the application name may differ, your screen will look like:

42 Chapter 3. Deploy CommCare HQ

./images/submit-history.png
./images/case-list.png

CommCareHQ Deployment

Select ‘Add Export,’ which will navigate you to the Create Case Data Export page. For now, accept the defaults and
click ‘Create’ at the bottom of the screen. This will return you to the ‘Export Case Data’ page and next to your newly
created export, select the ‘Export’ button. You’ll now be on the Download Case Data Export page, click ‘Prepare
Export’ and when ready, click ‘Download’ to ensure the export works correctly.

This will initiate an xlsx download of your case data. Feel free to open it and explore, but simply downloading the data
is enough to know the routine is functional.

This step tests: Case Exports, and exports more generally, ensure that Celery, BlobDB, and Redis are working as
expected. Celery processes the export and saves the result in BlobDB, while process status (the progress bar) is stored
in Redis.

3.4.11 Step 6b: (Optional) Exporting CommCare Data: OData Feed

CommCare HQ uses multiple API endpoints to allow users to access their data. One of the APIs built into the Comm-
Care UI is the OData Feed export that can be integrated with Power BI and Tableau. If applicable to your project, let’s
use this to further ensure our access to CommCare data is sound.

To begin, select Data from the top ribbon and click the Power BI/Tableau Integration. Once the page loads, click the
‘+Add OData Feed’ button. Similar to the Case Export routine we ran earlier, a modal will pop up with a series of
prompts. As the Feed Type, choose ‘Case,’ then select your application and the case type (likely, this will have defaulted
to ‘case’). Then click ‘Add OData Feed’ and you’ll land on the Create OData Case Feed page. Accept the defaults and
click save.

This will return you back to the PowerBi/Tableau Integration page with a newly created OData Feed. To test, we’ll
simply view the feed’s data in the URL line of your browser, rather than connect to a BI tool. Click ‘Copy OData Feed
Link’ and then open a new tab in your browser. Paste in this link and enter your CommCare HQ credentials. In a couple
moments, you’ll see your case information in JSON format in your browser

3.4. Testing your new CommCare Environment 43

./images/export-cases.png
./images/odata-feed.png

CommCareHQ Deployment

This step tests: At least one API endpoint within CommCare. This routine also uses Elasticsearch.

3.4.12 Step 7: Mobile worker upload

Lastly, let’s validate a data upload in CommCare HQ. Navigate back to Users in the top ribbon and click Mobile
Workers. Next, click ‘Download Mobile Workers’ and once the file is ready, ‘Download Users.’ This will download an
xlsx file with Mobile Worker information. Upon opening the file; you’ll see your mobile worker’s info with its password
hidden. Add additional usernames and passwords and save.

Once complete, click ‘Return to manage mobile workers’ and then the ‘Bulk upload’ button. Choose your file and once
selected, click ‘Upload mobile workers.’

After a moment, you will see ‘Mobile Worker upload has finished - Successfully uploaded X mobile workers.’

This step tests: This tests Celery and Redis.

3.4.13 Step 8: (Optional) SMS Gateway functionality

If your project is going to use SMS capability or wants to explore that option in the future, we recommend testing this
step as well.

To begin, access Messaging from the top ribbon and select View All. Here, you’ll need to set up a new gateway by
following the instructions in this article.

To test, return to Users and Mobile Workers. Then, select your mobile worker from the list to access the Edit Mobile
Worker page. This page will display all information associated with the mobile worker and allow us to add a phone
number. Scroll down to ‘Add a Phone Number’ and enter a phone number you’re able to access and are comfortable
using to receive a couple text messages. Please enter the phone number number, including country code, in digits only.
Once done, select ‘Add Number.’

44 Chapter 3. Deploy CommCare HQ

./images/upload-users.png
https://confluence.dimagi.com/display/commcarepublic/Setup+an+Android+SMS+Gateway
./images/sms-gateway.png

CommCareHQ Deployment

Remaining on the Edit Mobile Worker page, click the ‘Verify’ button. Within a few moments, you should receive a text
message. Replying ‘123’ will allow your number to be verified and will grant that user full access to SMS features in
CommCare.

This step tests: The connection of your SMS Gateway.

3.5 Migrating CommCare HQ

This section describes how to migrate CommCare HQ data between different instances.

• Migrate a Project from one instance to a new instance describes how to migrate a single project from one Comm-
Care HQ instance to a new CommCare HQ instance.

• Migrating an entire CommCare HQ instance describes how to migrate an entire CommCare HQ instance from
one set of servers to another set of servers.

3.5.1 Migrate a Project from one instance to a new instance

This document describes the process of migrating an individual project from Dimagi’s cloud environment (or any other
environment) to a new environment. If you are looking to migrate the entire environment to the new environment please
see Migrating an entire CommCare HQ instance.

This process requires assistance from Dimagi if migrating from www.commcarehq.org, as some steps require admin-
istrative access to the old environment. To do that, reach out to Dimagi or file a support request.

There are two components to migrate an individual project.

1. Migrating the project specific data to the new environment. This is done using export and import data function-
alities in CommCare HQ.

2. Switching the mobile devices with CommCare apps to use the new environment. This is done using a interim
proxy URL for mobile devices.

Note that during the export/import data phase the access to the project has to be disabled for mobile and web users,
which might take considerable amount of time. This should be planned and communicated in advance for a smooth
switchover to the new environment.

1. Switch mobile devices to a proxy URL

Each application maintains a series of URLs pointing to CommCare HQ environment used for various requests made
by the mobile devices. Migrating to a new web address requires updating these URLs in all the mobile devices at the
time of switching the environments after the data is migrated. Since rolling out an app update to every mobile device of
the project takes time during which the site needs to be offline, it will result in a long downtime for the project. Hence,
if your project has any more than a couple of devices, it’s best not to do it this way.

Instead, before the migration itself, a new/proxy URL can be set up and configured to direct requests to the original
environment and the mobile devices can be gradually updated to use the new URL while the project is still online. Then
after the migration, the URL can be switched to the new environment. The URL switch happens at the DNS level, so
an app update is not needed. Note that, an all device update is still required in this method, but the advantage is that it
can be done before the migration.

Note: Mobile devices should be switched to the proxy URL well in advance of doing the data migration so as to make
sure all mobile users updated their applications!

3.5. Migrating CommCare HQ 45

CommCareHQ Deployment

To do this, follow the below steps.

1. Set up a domain name to be used for the migration. Have it point to the old environment.

2. Add that domain name to the old environment’s public.yml

ALTERNATE_HOSTS:
- commcare.example.com

3. Update the list of valid hosts in nginx and Django, then restart services for it to take effect. After this, CommCare
HQ should be accessible at the new domain name.

$ cchq <env> ansible-playbook deploy_proxy.yml
$ cchq <env> update-config
$ cchq <env> service commcare restart

4. Set up SSL certificate for the domain name.

5. Enable the feature flag CUSTOM_APP_BASE_URL for the project. This will need to be done by a site administrator.

6. For each app in the project, navigate to Settings > Advanced Settings, and enter in the domain name you created
above.

7. Make a new build and test it out to ensure form submissions and syncs still work as usual.

8. Release the build and roll it out to all devices. You can refer to Application Status Report to make sure that all
the mobile devices are using this build.

If you don’t want to use the final domain to point to old environment, a different domain can also be used during
migration. That is, there are three registered domain names, which can be called “old”, “new”, and “mobile”. This
table describes which domain name each type of user will access at each stage of the migration:

web users mobile workers
current state access old domain access old domain
pre-migration access old domain access mobile domain as alias for old
during downtime access blocked access mobile domain, but blocked
post-migration access new domain access mobile domain as alias for new
after clean-up access new domain access new domain directly

Only after all the devices are updated to use a new/mobile URL, you can proceed to the next step.

2. Pull the domain data from the old environment

The migration will require you to block data access to prevent loss of data created during the migration. If you would
like to do a practice run, you will still need to block data access to ensure the exported data is in a clean state, and the
data will need to be cleared before the real run.

During the downtime, mobile users will still be able to collect data, but they will be unable to submit forms or sync
with the server.

• Block data access by turning on the DATA_MIGRATION feature flag (via HQ Web UI).

• Print information about the numbers in the database for later reference. This will take a while (15 mins) even on
small domains. Tip: add --csv to the command to save the output in a csv file.

– ./manage.py print_domain_stats <domain_name>

46 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

• A site administrator will need to run the data dump commands. First run $ df -h to ensure the machine has the
disk space to store the output. Then run the data dumps.

– ./manage.py dump_domain_data <domain_name>

– ./manage.py run_blob_export --all <domain_name>

Note: It is important to have the commit hash that dump_domain_data and run_blob_export were run from.
If Dimagi does not provide you with this commit hash, please followup to ensure you are able to reference this
hash in future steps.

• Transfer these files to the new environment.

Note: If you are not able to use your own domain for a test run and would like dump data for a test domain for
practising or testing, please contact support with the subject “Request for test domain dump data for migration testing”
and mention this page. We will provide you the above data for a test domain from our staging environment.

3. Prepare the new environment to be populated

• Ensure you are running the following steps from a release created using the CommCare version/commit hash
that you should have been provided in Step 1. This ensures the database will be migrated to the same state it was
in when the data was dumped.

• Setup a new environment by following Deploy CommCare HQ

• Follow steps in How To Rebuild a CommCare HQ environment to ensure your environment is in a clean state
before attempting to import data.

• Proceed to step 4.

4. Import the data to the new environment

• Ensure you are running the following steps from a release created using the CommCare version/commit hash
that you should have been provided in Step 1. This ensures the database will be migrated to the same state it was
in when the data was dumped.

• Import the dump files (each blob file will need to be imported individually)

– ./manage.py load_domain_data <filename.zip>

– ./manage.py run_blob_import <filename.tar.gz>

• Rebuild elasticsearch indices

– Rebuild the indices with the new data ./manage.py ptop_preindex --reset

• Print the database numbers and compare them to the values obtained previously

– ./manage.py print_domain_stats <domain_name>

• Rebuild user configrable reports by running.

– ./manage.py rebuild_tables_by_domain <domain_name> --initiated-by=<your-name>

• Bring the site back up $ commcare-cloud <env> downtime end

• Enable domain access by turning off the DATA_MIGRATION feature flag on the new environment (via HQ Web
UI).

3.5. Migrating CommCare HQ 47

CommCareHQ Deployment

5. Ensure the new environment is fully functional. Test all critical workflows at this stage.

• Check reports and exports for forms and cases migrated from the old environment.

• Download the application with a test user and submit some forms.

• Ensure that those new form submissions appear in reports and exports.

• Make a change to the application and ensure that it can be built.

6. Turn on the new environment

• If desired, configure rate limiting to throttle the backlog of pending form submissions to handle a dramatic spike
in load.

• Change the DNS entry for the proxy URL to point to the new environment. This will cause mobile devices to
contact the new servers, bringing them back on-line.

• The new site should now be ready for use. Instruct web users to access the new URL.

• The old domain should remain disabled for a while to avoid confusion.

7. Clean up

• Switch mobile devices to the new environment’s URL. Reverse the steps taken previously, since the custom URL
is no longer necessary.

• Once the success of the migration is assured, request that a site administrator delete the project space on the old
environment.

Troubleshooting

When transferring data for very large projects, you may run into infrastructural issues with the dump and load process.
This is somewhat unsurprising when you consider that you’re dealing with the project’s entire lifetime of data in a
single pass. It may be helpful to break down the process into smaller pieces to minimize the impact of any failures.

Blob data is already separated from everything else, which is advantageous, given that it’s likely to be the most volumi-
nous source of data. The rest of the data comes from four “dumpers” - domain, toggles, couch, and sql. You may
use dump_domain_data‘s --dumper arg to run any one (or multiple) of these independently. Each dumper also deals
with a number of models, which you can also filter. Before getting started, you should run print_domain_stats to
get an idea of where the project has data (even though it’s not comprehensive).

domain and toggles are trivially small. Assuming the project is on the SQL backend for forms and cases, the couch
dumper is also likely to be several orders of magnitude smaller than sql. Possible exceptions to this are projects with
very large numbers of users, gigantic fixtures, or those which use data forwarding, as they’ll have a large number of
RepeatRecords. If any of these models reach into the six figures or higher, you might want to dump them in isolation
using --include, then --exclude them from the “everything else” couch dump. If you don’t care about a particular
model (eg: old repeat records), they can simply be excluded.

$./manage.py dump_domain_data --dumper=couch --include=RepeatRecord <domain>
$./manage.py dump_domain_data --dumper=domain --dumper=toggles --dumper=couch --
→˓exclude=RepeatRecord <domain>

Dumping sql data is a bit trickier, as it’s relational, meaning for example that SQLLocation and LocationType must
be dumped together, lest they violate the DB’s constraint checking on import. Fortunately, as of this writing, the biggest
models are in relative isolation. There are two form submission models and six case models, but they don’t reference

48 Chapter 3. Deploy CommCare HQ

CommCareHQ Deployment

each other or anything else. You should validate that this is still the case before proceeding, however. Here are some
example dumps which separate out forms and cases.

$./manage.py dump_domain_data --dumper=sql --include=XFormInstanceSQL --
→˓include=XFormOperationSQL <domain>
$./manage.py dump_domain_data --dumper=sql --include=CommCareCaseSQL --
→˓include=CommCareCaseIndexSQL --include=CaseAttachmentSQL --include=CaseTransaction --
→˓include=LedgerValue --include=LedgerTransaction <domain>
$./manage.py dump_domain_data --dumper=sql --exclude=XFormInstanceSQL --
→˓exclude=XFormOperationSQL --exclude=CommCareCaseSQL --exclude=CommCareCaseIndexSQL --
→˓exclude=CaseAttachmentSQL --exclude=CaseTransaction --exclude=LedgerValue --
→˓exclude=LedgerTransaction <domain>

You may also want to separate out BlobMeta or sms models, depending on the project.

If the data was already split into multiple dump files, then you can just load them each individually. If not, or if
you’d like to split it apart further, you’ll need to filter the load_domain_data command as well. Each dump file is
a zip archive containing a file for each dumper, plus a meta.json file describing the contents. This can be useful for
deciding how to approach an unwieldly import. You can also specify which loaders to use with the --loader argument
(domain, toggles, couch, sql). You can also provide a regular expression to filter models via the --object-filter
argument. Refer to the meta.json for options.

Here are some useful examples:

Import only Django users:
$./manage.py load_domain_data path/to/dump.zip --object-filter=auth.User

Import a series of modules' models
$./manage.py load_domain_data path/to/dump.zip --object-filter='\b(?:data_
→˓dictionary|app_manager|case_importer|motech|translations)'

Exclude a specific model
$./manage.py load_domain_data path/to/dump.zip --object-filter='^((?!RepeatRecord).)*$'

Lastly, it’s very helpful to know how long commands take. They run with a progress bar that should give an estimated
time remaining, but I find it also helpful to wrap commands with the unix date command:

$ date; ./manage.py <dump/load command>; date

3.5.2 Migrating an entire CommCare HQ instance

This document describes high level steps to migrate an entire CommCare HQ instance from one set of servers to another
set of servers. If you are looking to migrate just a single project to a new environment please see Migrate a Project
from one instance to a new instance. You can also use that method if you care about only a single project in your
environment and don’t need other projects.

There are database and application services in a CommCare HQ instance. Only the data for database services need to
be migrated. There is no data to be migrated for stateless application services such as Django/Nginx/Celery/Pillow. It
is recommended that you understand the below high level steps, document necessary commands to be run prior and
plan out a migration timeline since it involves downtime. The downtime amount depends on how large your data size
is.

1. Setup the new environment. Naming the environment with a new name and the servers with new host names is
helpful down the line.

2. Disable automated tasks on new cluster (cron, monit, restarter scripts).

3.5. Migrating CommCare HQ 49

CommCareHQ Deployment

3. Start the downtime by stopping nginx and django services on old environment. You can use commcare-cloud
service command to do this.

4. Let the pillow/celery changes finish processing. This can be monitored using the monitoring dashboards.

5. Stop all the services and ensure that the databases are not getting any reads/writes.

6. Copy static site content from old to new nginx server. The data is in /etc/nginx/.htpasswd* and /var/www/
html/.

7. Migrate data from old machines to corresponding machines in the new environment.
• Setup necessary SSH permissions to transfer data between old and new machines.

• For Postgres/Elasticsearch/CouchDB, you can rsync the data directory for between corresponding
nodes in old and new environments.

• You may want to use commcare-cloud copy-files command if you have large number of nodes.

• Alternatively, data can be migrated using backups taken after the services have stopped.

• For BlobDB, follow the migration steps depending on what software you are using to host BlobDB.

• Update pl_proxy config using ./manage.py configure_pl_proxy_cluster.

• Setup postgres standby nodes if you are using. You can use setup_pg_standby playbook to do this.

8. Deploy a code deploy on new environment.

9. Reset kafka checkpoints (for pillows) by doing KafkaCheckpoint.objects.all().update(offset=0) in a django man-
agement shell.

10. Perform a test to make sure the data in old and new environments match. - You can use print_domain_stats
management command on both envs to compare. - Export forms or cases with few filters and compare.

11. Perform functionality tests using Testing your new CommCare Environment using a test domain.

12. Perform basic sync/submission tests on a CommCare mobile device. Since a DNS name is not setup yet, you
might have to use /etc/hosts or proxy forwarding to point the mobile device to the new environment when using
the web address. Or you can create a mobile app using CUSTOM_APP_BASE_URL pointing to the public IP of
new environment.

13. If everything is good, you can flip the DNS of your website to the public address of the new environment.

14. Your monitoring dashboards should start registering requests coming to the new environment.

3.6 Go Live Checklist

There are many things to be set up correctly before your CommCare HQ instance is made accessible over the internet.
This checklist helps you to plan a new environment setup and make sure that you have everything ready to go live.

1. Procure necessary compute, storage and any other hardware.

2. Procure licenses or necessary subscriptions if you will be using any external services such as Datadog, Sentry
and Email/SMS gateways.

3. Install necessary virtualization software and Ubuntu operation system.

4. Secure the servers where CommCare HQ will be installed.

5. Make sure Ports Required for CommCare HQ are not blocked by any firewall or networking rules.

6. Install CommCare HQ using Quick Install on Single Server or Install Using Commcare-Cloud on one or more
machines.

50 Chapter 3. Deploy CommCare HQ

https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/ansible/setup_pg_standby.yml

CommCareHQ Deployment

7. Make sure SSL is set up and do an application deploy. Both of these are described in the installation docs.

8. Test that your environment is set up correctly by Testing your new CommCare Environment.

9. If you are migrating follow Migrate a Project from one instance to a new instance or Migrating an entire Comm-
Care HQ instance and make sure the migration is successful using the tests described in those guides.

10. Make sure you have backups and monitoring set up correctly.

11. Configure DNS for your host address to your nginx server’s public IP to go live.

3.6. Go Live Checklist 51

CommCareHQ Deployment

52 Chapter 3. Deploy CommCare HQ

CHAPTER

FOUR

OPERATIONS AND MAINTENANCE

This section has details on how to perform various operations and maintain a healthy CommCare HQ instance.

• Managing The Deployment describes how to restart services, how to deploy CommCare HQ code changes and
other advanced topics.

• Monitoring and Alerting describes how to use Datadog for monitoring your instance and what all monitoring
metrics are important to keep your instance up and running always.

• Set up Sentry for error logs describes how to set up Sentry to track error logs generated by various services in
your CommCare HQ instance.

• Expectations for Ongoing Maintenance gives guidelines on the minimum required maintenance to keep your
instance upto date.

• Please refer to the Table of Contents below for more topics.

4.1 Managing The Deployment

This section describes how to restart services, how to deploy CommCare HQ code changes and other advanced topics.

Table of Contents

• Server Management Basics

– Manage services

– Stop all CommCare HQ services

– Handling a reboot

– Update CommCare HQ local settings

– Run Django Management Commands

– A note about system users

• Deploying CommCare HQ code changes

– Prerequisites

– Step 1: Update commcare-cloud

– Step 2: Deploy new CommCare HQ code to all machines

– Step 3: Checking services once deploy is complete

• Advanced

53

CommCareHQ Deployment

– Run a pre-index

– Resume failed deploy

– Roll back a failed deploy

– Deploy static settings files

– Deploying Formplayer

– Formplayer static settings

• Scheduling Deploys

– CommCare deploy

– Formplayer deploy

– Local Settings deploy

• Resolving problems with deploys

– Local Settings Mismatch

4.1.1 Server Management Basics

Manage services

To manage services you can use the service command

$ commcare-cloud <env> service postgresql [status|start|stop|restart]
$ commcare-cloud <env> service --help

Stop all CommCare HQ services

$ commcare-cloud <env> service commcare stop
$ commcare-cloud <env> service commcare start

OR

$ commcare-cloud <env> downtime start
$ commcare-cloud <env> downtime end

In addition to stopping all services this command will check to see if any processes are still running and give you the
option of terminating them or waiting for them to stop.

54 Chapter 4. Operations and maintenance

CommCareHQ Deployment

Handling a reboot

When a server reboots there are a number of tasks that should be run to ensure that the encrypted drive is decrypted
and all systems are brought back up.

$ commcare-cloud <env> after-reboot --limit <inventory name or IP> all

Update CommCare HQ local settings

To roll out changes to the localsettings.py file for Django or the application.properties file for Formplayer:

$ commcare-cloud <env> update-config

Note that you will need to restart the services in order for the changes to be picked up by the processes.

Run Django Management Commands

To run Django management commands we need to log into a machine which has Django configured. Usually we run
these commands on the django_manage machine which is a webworker machine.

$ cchq <env> ssh django_manage
$ sudo -iu cchq #Switch to cchq user
$ cd /home/cchq/www/<env>/current # Change directory to current django release folder
$ source python_env/bin/activate # Activate the python virtual env
$./manage.py <command> # Run the command

There is also an alternate method for running management commands which can be useful in certain situations:

$ cchq <env> django-manage <command> <options>

Here are some common examples:

get a Django shell
$ cchq <env> django-manage shell

get a DB shell
$ cchq <env> django-manage dbshell --database <dbalias>

check services
$ cchq <env> django-manage check-services

A note about system users

commcare-cloud creates and uses the ansible user on machines that it manages. You should not login as this user
or use it for other things other than automated tasks run by the ansible process. This is especially applicable when you
have a control machine that runs other commcare processes.

4.1. Managing The Deployment 55

CommCareHQ Deployment

4.1.2 Deploying CommCare HQ code changes

This document will walk you through the process of updating the CommCare HQ code on your server using
commcare-cloud.

Prerequisites

Ensure that you have a working version of commcare-cloud which is configured to act on your monolith or fleet of
servers. You can find more information on setting up commcare-cloud in CommCare Cloud Reference.

If you have followed installation/quick-monolith-install: commcare-cloud will be installed on the CommCare HQ
server itself.

All commands listed here will be run from your control machine which has commcare-cloud installed.

Step 1: Update commcare-cloud

We first want to pull the latest code for commcare-cloud to make sure it has the latest bugfixes by running:

$ update-code

This command will update the commcare-cloud command from GitHub and apply any updates required. You can see
exactly what this command does in this file.

Step 2: Deploy new CommCare HQ code to all machines

CommCare HQ is deployed using ansible , which ensures only the necessary code is deployed to each machine.

Envoke the deploy command by running:

$ commcare-cloud <env> deploy

where you will substitute <env> for the name of the environment you wish to deploy to.

Preindex Command

The first step in deploy is what we call a preindex, which updates any CouchDB views and Elasticsearch indices.
This only runs when changes need to be made, and may take a while depending on the volume of data that you have in
these data stores. You may need to wait for this process to complete in order to complete deploy.

If your server has email capabilities, you can look out for an email notification with the subject: [<env>_preindex]
HQAdmin preindex_everything may or may not be complete. This will be sent to the SERVER_EMAIL email
address defined in the Django settings file.

You can also try running:

$ commcare-cloud <env> django-manage preindex_everything --check

If this command exits with no output, there is still a preindex ongoing.

56 Chapter 4. Operations and maintenance

https://github.com/dimagi/commcare-cloud/blob/master/control/update_code.sh
https://www.ansible.com/

CommCareHQ Deployment

Step 3: Checking services once deploy is complete

Once deploy has completed successfully, the script will automatically restart each service, as required. You can check
that the system is in a good state by running:

$ commcare-cloud <env> django-manage check_services

This will provide a list of all services which are running in an unexpected state.

You may also wish to monitor the following pages, which provide similar information if you are logged in to CommCare
HQ as a superuser:

• https://<commcare url>/hq/admin/system/

• https://<commcare url>/hq/admin/system/check_services

4.1.3 Advanced

The following commands may be useful in certain circumstances.

Run a pre-index

When there are changes that require a reindex of some database indexes it is possible to do that indexing prior to the
deploy so that the deploy goes more smoothly.

Examples of change that woud result in a reindex are changes to a CouchDB view, or changes to an Elasticsearch index.

To perform a pre-index:

$ commcare-cloud <env> preindex-views

Resume failed deploy

If something goes wrong and the deploy fails part way through you may be able to resume it as follows:

$ commcare-cloud <env> deploy --resume

Roll back a failed deploy

You may also wish to revert to a previous version of the CommCare HQ code if the version you just deployed was not
working for some reason. Before reverting, you should ensure that there were no database migrations that were run
during the previous deploy that would break if you revert to a previous version.

$ commcare-cloud <env> deploy commcare --resume=PREVIOUS_RELEASE

4.1. Managing The Deployment 57

CommCareHQ Deployment

Deploy static settings files

When changes are made to the static configuration files (like localsettings.py), you will need to deploy those static
changes independently.

$ cchq <env> update-config

Deploying Formplayer

In addition to the regular deploy, you must also separately deploy the service that backs Web Apps and App Preview,
called formplayer. Since it is updated less frequently, we recommend deploying formplayer changes less frequently as
well. Doing so causes about 1 minute of service interruption to Web Apps and App Preview, but keeps these services
up to date.

commcare-cloud <env> deploy formplayer

Formplayer static settings

Some Formplayer updates will require deploying the application settings files. You can limit the local settings deploy
to only Formplayer machines to roll these out

$ cchq <env> update-config --limit formplayer

4.1.4 Scheduling Deploys

CommCare deploy

For locally hosted deployments, we recommend deploying once a week (for example, every Wednesday), to keep up
to date with new features and security patches.

Since CommCare HQ is an Open Source project, you can see all the new features that were recently merged by looking
at the merged pull requests on GitHub.

Formplayer deploy

In addition to the regular deploy, we recommend deploying formplayer once a month.

Local Settings deploy

Settings generally only need to be deployed when static files are updated against your specific environment.

Sometimes changes are made to the system which require new settings to be deployed before code can be rolled out.
In these cases, the detailed steps are provided in the changelog. Announcements are made to the Developer Forum in
a dedicated category when these actions are needed. We strongly recommend that anyone maintaining a CommCare
Cloud instance subscribe to that feed.

58 Chapter 4. Operations and maintenance

https://github.com/dimagi/commcare-hq/pulls?q=is%3Apr+is%3Aclosed
https://commcare-cloud.readthedocs.io/en/latest/changelog/index.html#changelog
https://forum.dimagi.com/
https://forum.dimagi.com/c/developers/maintainer-announcements/

CommCareHQ Deployment

4.1.5 Resolving problems with deploys

This document outlines how to recover from issues which are enountered when performing deploys from
commcare-cloud.

Make sure you are up to date with the above documented process for deploying code changes.

All commands listed here will be run from your control machine which has commcare-cloud installed.

Local Settings Mismatch

If local settings files don’t match the state expected by ansible, the deploy will fail.

Potential Causes

If commcare-cloud is not up to date when a deploy is run, the resulting deploy may change the local configuration of
services in unintended ways, like reverting localsettings files pushed from an up-to-date deploy. If commcare-cloud
is then updated and a new deploy occurs, the deploy can fail due to the ambiguous state.

Example Error

Here is an example of this error which could result from

• User A updates commcare-cloud to add newfile.properties to formplayer and deploys that change

• User B deploys formplayer with an out-of-date commcare-cloud instance which doesn’t include User A’s
changes

• User B updates commcare-cloud and attempts to deploy again

TASK [formplayer : Copy formplayer config files from current release]␣
→˓***
failed: [10.200.9.53] (item={u'filename': u'newfile.properties'}) => {"ansible_loop_var
→˓": "item", "changed": false, "item": {"filename": "newfile.properties"}, "msg":
→˓"Source /home/cchq/www/production/formplayer_build/current/newfile.properties not found
→˓"}

Resolution

After updating commcare-cloud and ensuring everything is up to date, running a static settings deploy on the relevant
machines should fix this problem, and allow the next deploy to proceed as normal.

4.1. Managing The Deployment 59

2-deploys.html#deploy-static-settings-files

CommCareHQ Deployment

4.2 Monitoring and Alerting

This is a guide on how to setup monitoring for your CommCare HQ instance for realtime visibility into what’s happening
in your instance and how to setup alerts.

Real time monitoring is essential to get insights into how the system is performing at a given moment and troubleshoot
issues as they arise. Monitoring could also be helpful to forecast resources requirements for future scaling. Alerts can
be setup on various monitoring metrics to detect resource limits, anamolies that might cause an issue on your server.

CommCare HQ instance can send metrics to Datadog or Prometheus. This can be configured via commcare-cloud.

4.2.1 Datadog

Datadog is a monotoring and alerting tool that has support for variety of applications and is easily extendable which is
why in our case it is used for monitoring various system, application metrics and also custom CommCare HQ metrics.
You can read more about datadog in their docs

commcare-cloud can setup the requisite datadog integration automatically when you do full stack deploy. You will
need to set DATADOG_ENABLED to True in your environment’s public.yml file and add your account api keys to your
vault file.

The default configuration sets up all datadog integrations and there might be a lot of data metrics being generated in
your datadog account by your CommCare instance. Individual integrations may be turned on/off by setting relvant vars
like datadog_integration_postgres or datadog_integration_redis etc in public.yml file.

4.2.2 Prometheus

Prometheus is an open source tool which you can self host on one of your machines. To setup a Prometheus server using
commcare-cloud you can add a server under promethus and do cchq <env> aps deploy_prometheus.yml. This
also gets executed automatically while doing cchq deploy-stack. To setup service integrations with the Prometheus
server you will need to set prometheus_monitoring_enabled to True in your environment’s public.yml file.

4.2.3 CommCare Infrastructure Metrics

Below we list down important metrics that you should consider as a minimum monitoring setup. Using these metrics
you can create various dashboard views and alerts inside your Datadog project. Even though, this is specific to Datadog,
you can adapt the same to Prometheus.

Recommended Dashboards

Here are few non-exhaustive preset dashboard views that you can import using Datadog import dashboard through json
functionality.

• hq-vitals.json gives a glance of all components of CommCare

• mobile-success.json for monitoring success rate of mobile requests to the server

• postgres-overview.json for Postgres monitoring

• celery.json for monitoring bakcground application tasks of celery

• couchdb.json for CouchDB monitoring

60 Chapter 4. Operations and maintenance

https://docs.datadoghq.com/dashboards/#copy-import-or-export-dashboard-json

CommCareHQ Deployment

The tables below tabulate most of the metrics already found in the .json Datadog dashboards listed above, but in some
instances contain some additional metrics you might also want to consider monitoring. The list is not absolute nor
exhaustive, but it will provide you with a basis for monitoring the following aspects of your system:

• Performance

• Throughput

• Utilization

• Availability

• Errors

• Saturation

Each table has the following format:

Met-
ric

Metric type Why care User impact How to measure

Name
of
met-
ric

Category or
aspect of sys-
tem the metric
speaks to

Brief de-
scription of
why metric is
important

Explains the im-
pact on user if
undesired reading
is recorded

A note on how the metric might be obtained.
Please note that it is assumed that Datadog will
be used as a monitoring solution unless specified
otherwise.

General Host

The Datadog Agent ships with an integration which can be used to collect metrics from your base system. See the
System Integration for more information.

4.2. Monitoring and Alerting 61

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/system/

CommCareHQ Deployment

Metric Metric type Why care User impact How to measure
CPU usage (%) Utilization Monitoring server

CPU usage helps
you understand how
much your CPU
is being used, as
a very high load
might result in
overall performance
degradation.

Lagging experience

system.cpu.idle
system.cpu.system
system.cpu.iowait
system.cpu.user

Load averages 1-5-
15

Utilization Load average (CPU
demand) over 1
min, 5 min and 15
min which includes
the sum of running
and waiting threads.
What is load average

User might ex-
perience trouble
connecting to the
server

system.load.1
system.load.5
system.load.15

Memory Utilization It shows the amount
of memory used
over time. Running
out of memory
may result in killed
processes or more
swap memory used,
which will slow
down your system.
Consider optimizing
processes or in-
creasing resources.

Slow performance

system.mem.usable
system.mem.total

Swap memory Utilization This metric shows
the amount of swap
memory used. Swap
memory is slow, so
if your system de-
pends too much on
swap, you should in-
vestigate why RAM
usage is so high.
Note that it is normal
for systems to use
a little swap mem-
ory even if RAM is
available.

Server unrespon-
siveness

system.swap.free
system.swap.used

Disk usage Utilization Disk usage is impor-
tant to prevent data
loss in the event that
the disk runs out of
available space.

Data loss system.disk.in_use

Disk latency Throughput The average time
for I/O requests
issued to the device
to be served. This
includes the time
spent by the requests
in queue and the
time spent servicing
them. High disk
latency will result
in slow response
times for things like
reports, app installs
and other services
that read from disk.

Slow performance system.io.await

Network traffic Throughput This indicates the
amount of incoming
and outgoing traffic
on the network.
This metric is a
good gauge on the
average network
activity on the
system. Low or con-
sistently plateauing
network through-
put will result in
poor performance
experienced by end
users, as sending
and receiving data
from them will be
throttled.

Slow performance

system.net.bytes_rcvd

system.net.bytes_sent

62 Chapter 4. Operations and maintenance

https://www.site24x7.com/blog/load-average-what-is-it-and-whats-the-best-load-average-for-your-linux-servers

CommCareHQ Deployment

Gunicorn

The Datadog Agent ships with an integration which can be used to collect metrics. See the Gunicorn Integration for
more information.

Metric Met-
ric
type

Why care User impact How
to
mea-
sure

Re-
quests
per
second

Through-
put

This metric shows the rate of requests received. This can be used to give
an indication of how busy the application is. If you’re constantly getting
a high request rate, keep an eye out for bottlenecks on your system.

Slow user
experience
or trouble
accessing
the site.

guni-
corn.requests

Request
dura-
tion

Through-
put

Long request duration times can point to problems in your system / ap-
plication.

Slow expe-
rience and
timeouts

guni-
corn.request.duration.*

Http
status
codes

Per-
for-
mance

A high rate of error codes can either mean your application has faulty
code or some part of your application infrastructure is down.

User might
get errors on
pages

guni-
corn.request.status.*

Busy
vs idle
Guni-
corn
workers

Uti-
liza-
tion

This metric can be used to give an indication of how busy the gunicorn
workers are over time. If most of the workers are busy most of the
time, it might be necessary to start thinking of increasing the number
of workers before users start having trouble accessing your site.

Slow user
experience
or trouble
accessing
the site.

guni-
corn.workers

Nginx

The Datadog Agent ships with an integration which can be used to collect metrics. See the Nginx Integration for more
information.

4.2. Monitoring and Alerting 63

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/gunicorn/
https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/nginx/?tab=host

CommCareHQ Deployment

Metric Metric type Why care User impact How to measure
Total requests Throughput This metric indi-

cates the number
of client requests
your server handles.
High rates means
bigger load on the
system.

Slow experience nginx.requests.total

Requests per second Throughput This metric shows
the rate of requests
received. This can
be used to give an
indication of how
busy the applica-
tion is. If you’re
constantly getting
a high request rate,
keep an eye out for
services that might
need additional
resources to perform
optimally.

Slow user expe-
rience or trouble
accessing the site.

ng-
inx.net.request_per_s

Dropped connec-
tions

Errors If NGINX starts
to incrementally
drop connections it
usually indicates a
resource constraint,
such as NGINX’s
worker_connections
limit has been
reached. An inves-
tigation might be in
order.

Users will not be
able to access the
site.

ng-
inx.connections.dropped

Server error rate Error Your server error
rate is equal to
the number of 5xx
errors divided by
the total number
of status codes.
If your error rate
starts to climb over
time, investigation
may be in order. If
it spikes suddenly,
urgent action may be
required, as clients
are likely to report
errors to the end
user.

User might get er-
rors on pages

nginx.server_zone.responses.5xx

nginx.server_zone.responses.total_count

Request time Performance This is the time in
seconds used to
process the request.
Long response
times can point to
problems in your
system / application.

Slow experience and
timeouts

Need to include in
NGINX configura-
tion file

64 Chapter 4. Operations and maintenance

https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection
https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection
https://docs.datadoghq.com/integrations/nginx/?tab=host#log-collection

CommCareHQ Deployment

PostgreSQL

PostgreSQL has a statistics collector subsystem that collects and reports on information about the server activity.

The Datadog Agent ships with an integration which can be used to collect metrics. See the PostgreSQL Integration for
more information.

4.2. Monitoring and Alerting 65

https://www.postgresql.org/docs/12/monitoring-stats.html
https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/postgres/?tab=host

CommCareHQ Deployment

Metric Metric type Why care User impact How to measure
Sequential scans on
table vs. Index scans
on table

Other This metric speaks
directly to the speed
of query execution.
If the DB is mak-
ing more sequential
scans than indexed
scans you can im-
prove the DB’s per-
formance by creat-
ing an index.

Tasks that require
data to be fetched
from the DB will
take a long time to
execute.

PostgreSQL:

pg_stat_user_tables
Datadog
integration:

postgresql.seq_scans

postgresql.index_scans

Rows fetched vs. re-
turned by queries to
DB

Throughput This metric shows
how effectively the
DB is scanning
through its data. If
many more rows are
constantly fetched
vs returned, it means
there’s room for op-
timization.

Slow experience
for tasks that access
large parts of the
database.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.rows_fetched

postgresql.rows_returned

Amount of data
written temporarily
to disk to execute
queries

Saturation If the DB’s tempo-
rary storage is con-
stantly used up, you
might need to in-
crease it in order
to optimize perfor-
mance.

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.temp_bytes

Rows inserted, up-
dated, deleted (by
database)

Throughput This metric gives
an indication of
what type of write
queries your DB
serves most. If a
high rate of updated
or deleted queries
persist, you may
want to keep an eye
out for increasing
dead rows as this
will degrade DB
performance.

No direct impact
PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.rows_inserted

postgresql.rows_updated

postgresql.rows_deleted

Locks Other A high lock rate
in the DB is an
indication that
queries could be
long-running and
that future queries
might start to time
out.

Slow experience for
tasks that read data
from the database.

PostgreSQL:
pg_locks

Datadog
integration:

postgresql.locks

Deadlocks Other The aim is to have no
deadlocks as it’s re-
source intensive for
the DB to check for
them. Having many
deadlocks calls for
reevaluating execu-
tion logic. Read
more

Slow experience for
tasks that read data
from the database.
Some tasks may
even hang and the
user will get errors
on pages.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.deadlocks

Dead rows Other A constantly in-
creasing number
of dead rows show
that the DB’s VAC-
UUM process is not
working properly.
This will affect
DB performance
negatively.

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_stat_user_tables
Datadog
integration:

postgresql.dead_rows

Replication delay Other A higher delay
means data is less
consistent across
replication servers.

In the worst case,
some data may ap-
pear missing.

PostgreSQL:
pg_xlog

Datadog
integration:

postgresql.replication_delay

Number of check-
points requested vs
scheduled

Other Having more re-
quested checkpoints
than scheduled
checkpoints means
decreased writ-
ing performance
for the DB.`Read
more <https://www.
cybertec-postgresql.
com/en/
postgresql-what-is-a-checkpoint/
?gclid=
CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_
BwE>`_

Slow experience for
tasks that read data
from the database.

PostgreSQL:

pg_stat_bgwriter
Datadog
integration:

postgresql.bgwriter.checkpoints_timed

postgresql.bgwriter.checkpoints_requested

Active connections Utilization Having the number
of active connec-
tions consistently
approaching the
number of maxi-
mum connections,
this can indicate
that applications
are issuing long-
running queries and
constantly creating
new connections
to send other re-
quests, instead of
reusing existing
connections. Using
a connection pool
can help ensure
that connections are
consistently reused
as they go idle,
instead of placing
load on the primary
server to frequently
have to open and
close connections.
Typically, opening a
DB connection is an
expensive operation.

Users might get er-
rors on pages which
need to access the
database but cannot
due to too many cur-
rently active connec-
tions.

PostgreSQL:

pg_stat_database
Datadog
integration:

postgresql.connections

postgresql.max_connections

66 Chapter 4. Operations and maintenance

https://www.cybertec-postgresql.com/en/postgresql-understanding-deadlocks/
https://www.cybertec-postgresql.com/en/postgresql-understanding-deadlocks/
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE
https://www.cybertec-postgresql.com/en/postgresql-what-is-a-checkpoint/?gclid=CjwKCAjw7fuJBhBdEiwA2lLMYbUeLBrWYvSMjishfoa-RAEbkTNIL315MGdx6nrHnDK0A4UpjkbZIRoCTwYQAvD_BwE

CommCareHQ Deployment

Elasticsearch

The Datadog Agent ships with an integration which can be used to collect metrics. See the Elasticsearch Integration
for more information.

4.2. Monitoring and Alerting 67

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/elastic/?tab=host

CommCareHQ Deployment

Metric Metric type Why care User impact How to measure
Query load Utilization Monitoring the

number of queries
currently in progress
can give you a rough
idea of how many
requests your cluster
is dealing with
at any particular
moment in time.

A high load might
slow down any tasks
that involve search-
ing users, groups,
forms, cases, apps
etc.

elastic-
search.primaries.search.query.current

Average query la-
tency

Throughput If this metric shows
the query latency is
increasing it means
your queries are
becoming slower,
meaning either
bottlenecks or inef-
ficient queries.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elasticsearch.primaries.search.query.total

elasticsearch.primaries.search.query.time

Average fetch la-
tency

Throughput This should typ-
ically take less
time than the query
phase. If this met-
ric is constantly
increasing it could
indicate problems
with slow disks or
requesting of too
many results.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elasticsearch.primaries.search.fetch.total

elasticsearch.primaries.search.fetch.time

Average index la-
tency

Throughput If you notice an
increasing latency
it means you may
be trying to in-
dex too many
documents simulta-
neously.Increasing
latency may slow
down user experi-
ence.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elasticsearch.indexing.index.total

elasticsearch.indexing.index.time

Average flush la-
tency

Throughput Data is only per-
sisted on disk after a
flush. If this metric
increases with time
it may indicate a
problem with a slow
disk. If this problem
escalates it may pre-
vent you from being
able to add new in-
formation to your in-
dex.

Slow user ex-
perience when
generating or re-
ports, filtering
groups or users, etc.
In the worst case
there may be some
data loss.

elasticsearch.primaries.flush.total

elasticsearch.primaries.flush.total.time

Percent of JVM
heap currently in
use

Utilization Garbage collec-
tions should initiate
around 75% of heap
use. When this
value is consistently
going above 75%
it indicates that
the rate of garbage
collection is not
keeping up with the
rate of garbage cre-
ation which might
result in memory
errors down the line.

Users might experi-
ence errors on some
pages

jvm.mem.heap_in_use

Total time spent on
garbage collection

Other The garbage collec-
tion process halts
the node, during
which the node
cannot complete
tasks. If this halting
duration exceeds
the routine status
check (around 30
seconds) the node
might mistakenly be
marked as offline.

Users can have a
slow experience and
in the worst case
might even get er-
rors on some pages.

jvm.gc.collectors.young.collection_time

jvm.gc.collectors.old.collection_time

Total HTTP connec-
tions opened over
time

Other If this number
is constantly in-
creasing it means
that HTTP clients
are not properly
establishing persis-
tent connections.
Reestablishing adds
additional overhead
and might result
in requests taking
unnecessarily long
to complete.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elastic-
search.http.total_opened

Cluster status Other The status will in-
dicate when at least
one replica shard is
unallocated or miss-
ing. If more shards
disappear you may
lose data.

Missing data
(not data loss, as
Elasticsearch is a
secondary database)

elastic-
search.cluster_health

Number of unas-
signed shards

Availability When you first
create an index,
or when a node
is rebooted, its
shards will briefly
be in an “initial-
izing” state before
transitioning to a
status of “started”
or “unassigned”, as
the primary node
attempts to assign
shards to nodes in
the cluster. If you
see shards remain
in an initializing
or unassigned state
too long, it could
be a warning sign
that your cluster is
unstable.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elastic-
search.unassigned_shards

Thread pool queues Large queues are not
ideal because they
use up resources and
also increase the risk
of losing requests if
a node goes down.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc. In the
worst case

elastic-
search.thread_pool.bulk.queue

Pending tasks Saturation The number of
pending tasks is a
good indication of
how smoothly your
cluster is operating.
If your primary
node is very busy
and the number
of pending tasks
doesn’t subside,
it can lead to an
unstable cluster.

Slow user experi-
ence when gener-
ating or reports,
filtering groups or
users, etc.

elastic-
search.pending_tasks_total

Unsuccessful GET
requests

Error An unsuccessful get
request means that
the document ID
was not found. You
shouldn’t usually
have a problem with
this type of request,
but it may be a good
idea to keep an eye
out for unsuccessful
GET requests when
they happen.

User might get er-
rors on some pages

elastic-
search.get.missing.total

68 Chapter 4. Operations and maintenance

CommCareHQ Deployment

CouchDB

The Datadog Agent ships with an integration which can be used to collect metrics. See the CouchDB Integration for
more information.

Metric Met-
ric
type

Why care User impact How to
measure

Open
databases

Avail-
abil-
ity

If the number of open databases are too low you might have
database requests starting to pile up.

Slow user
experience if
the requests
start to pile up
high.

couchdb.couchdb.open_databases

File de-
scriptors

Uti-
liza-
tion

If this number reaches the max number of available file de-
scriptors, no new connections can be opened until older ones
have closed.

The user
might get er-
rors on some
pages.

couchdb.couchdb.open_os_files
over

Data size Uti-
liza-
tion

This indicates the relative size of your data. Keep an eye on
this as it grows to make sure your system has enough disk space
to support it.

Data loss couchdb.by_db.file_size

HTTP Re-
quest Rate

Through-
put

Gives an indication of how many requests are being served. Slow perfor-
mance

couchdb.couchdb.httpd.requests

Request
with sta-
tus code
of 2xx

Per-
for-
mance

Statuses in the 2xx range are generally indications of success-
ful operation.

No negative
impact

couchdb.couchdb.httpd_status_codes

Request
with sta-
tus code
of 4xx
and 5xx

Per-
for-
mance

Statuses in the 4xx and 5xx ranges generally tell you something
is wrong, so you want this number as low as possible, prefer-
ably zero. However, if you constantly see requests yielding
these statuses, it might be worth looking into the matter.

Users might
get errors on
some pages.

couchdb.couchdb.httpd_status_codes

Workload
- Reads &
Writes

Per-
for-
mance

These numbers will depend on the application, but having this
metric gives an indication of how busy the database generally
is. In the case of a high workload, consider ramping up the
resources.

Slow perfor-
mance

couchdb.couchdb.database_reads

Average
request
latency

Through-
put

If the average request latency is rising it means somewhere
exists a bottleneck that needs to be addressed.

Slow perfor-
mance

couchdb.couchdb.request_time.arithmetic_mean

Cache hits Other CouchDB stores a fair amount of user credentials in memory
to speed up the authentication process. Monitoring usage of
the authentication cache can alert you for possible attempts to
gain unauthorized access.

A low number
of hits might
mean slower
performance

couchdb.couchdb.auth_cache_hits

Cache
misses

Er-
ror

If CouchDB reports a high number of cache misses, then either
the cache is undersized to service the volume of legitimate user
requests, or a brute force password/username attack is taking
place.

Slow perfor-
mance

couchdb.couchdb.auth_cache_misses

4.2. Monitoring and Alerting 69

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/couch/?tab=host#pagetitle

CommCareHQ Deployment

Kafka

The Datadog Agent ships with a Kafka Integration to collect various Kafka metrics. Also see Integrating Datadog,
Kafka and Zookeper.

70 Chapter 4. Operations and maintenance

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/kafka/?tab=host
https://www.datadoghq.com/blog/monitor-kafka-with-datadog/#integrating-datadog-kafka-and-zookeeper
https://www.datadoghq.com/blog/monitor-kafka-with-datadog/#integrating-datadog-kafka-and-zookeeper

CommCareHQ Deployment

Broker Metrics

Metric Metric type Why care User impact How to measure
UnderReplicated-
Partitions

Availability If a broker be-
comes unavail-
able, the value of
UnderReplicat-
edPartitions will
increase sharply.
Since Kafka’s
high-availability
guarantees cannot
be met without
replication, investi-
gation is certainly
warranted should
this metric value
exceed zero for ex-
tended time periods.

Fewer in-sync
replicas means the
reports might take
longer to show the
latest values.

kafka.replication.under_replicated_partitions

IsrShrinksPerSec Availability The rate at which
the in-sync repli-
cas shrinks for a
particular partition.
This value should
remain fairly static.
You should inves-
tigate any flapping
in the values of
these metrics, and
any increase in
IsrShrinksPerSec
without a corre-
sponding increase in
IsrExpandsPerSec
shortly thereafter.

As the in-sync repli-
cas become fewer,
the reports might
take longer to show
the latest values.

kafka.replication.isr_shrinks.rate

IsrExpandsPerSec Availability The rate at which the
in-sync replicas ex-
pands.

As the in-sync repli-
cas become fewer,
the reports might
take longer to show
the latest values.

kafka.replication.isr_expands.rate

TotalTimeMs Performance This metrics reports
on the total time
taken to service a
request.

Longer servicing
times mean data-
updates take longer
to propagate to the
reports.

kafka.request.produce.time.avg

kafka.request.consumer.time.avg

kafka.request.fetch_follower.time.avg

ActiveController-
Count

Error The first node to
boot in a Kafka clus-
ter automatically
becomes the con-
troller, and there can
be only one. You
should alert on any
other value that lasts
for longer than one
second. In the case
that no controller is
found, Kafka might
become unstable
and new data might
not be updated.

Reports might not
show new updated
data, or even break. kafka.replication.active_controller_count

Broker network
throughput

Throughput This metric indi-
cates the broker
throughput.

If the throughput be-
comes less, the user
might find that re-
ports take longer to
reflect updated data.

kafka.net.bytes_in.rate

kafka.net.bytes_out.rate

Clean vs unclean
leaders elections

Error When a partition
leader dies, an elec-
tion for a new leader
is triggered. New
leaders should only
come from replicas
that are in-sync with
the previous leader,
however, this is a
configuration setting
that can allow for
unclean elections.

Data might be
missing in reports.
(the data will not
be lost, as the data
is already stored
in PostgreSQL or
CouchDB, but the
reports will not
reflect the latest
changes)

kafka.replication.leader_elections.rate

kafka.replication.unclean_leader_elections.rate

Fetch/request purga-
tory

Other An unclean leader is
a leader that is not
completely in-sync
with the previous
leader, so when an
unclean leader is
elected, you will
lose any data that
was produced to
Kafka before the
full sync happened.
You should alert on
any unclean leaders
elected.

Reports might take
longer to reflect the
latest data. kafka.request.producer_request_purgatory.size

kafka.request.fetch_request_purgatory.size

4.2. Monitoring and Alerting 71

CommCareHQ Deployment

Producer Metrics

Met-
ric

Met-
ric
type

Why care User impact How to
mea-
sure

Re-
quest
rate

Through-
put

The request rate is the rate at which producers send
data to brokers. Keeping an eye on peaks and drops is
essential to ensure continuous service availability.

Reports might take longer to
reflect the latest data.

kafka.producer.request_rate

Re-
sponse
rate

Through-
put

Average number of responses received per second
from the brokers after the producers sent the data to
the brokers.

Reports might take longer to
reflect the latest data.

kafka.producer.response_rate

Re-
quest
la-
tency
aver-
age

Through-
put

Average request latency (in ms). Read more Reports might take longer to
reflect the latest data.

kafka.producer.request_latency_avg

Out-
going
byte
rate

Through-
put

Monitoring producer network traffic will help to in-
form decisions on infrastructure changes, as well as to
provide a window into the production rate of produc-
ers and identify sources of excessive traffic.

High network throughput
might cause reports to take a
longer time to reflect the latest
data, as Kafka is under heavier
load.

kafka.net.bytes_out.rate

Batch
size
aver-
age

Through-
put

To use network resources more efficiently, Kafka pro-
ducers attempt to group messages into batches before
sending them. The producer will wait to accumulate
an amount of data defined by the batch size. Read
more

If the batch size average is
too low, reports might take a
longer time to reflect the latest
data.

kafka.producer.batch_size_avg

72 Chapter 4. Operations and maintenance

https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-request-latency-average
https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-batch-size
https://www.datadoghq.com/blog/monitoring-kafka-performance-metrics/#metric-to-watch-batch-size

CommCareHQ Deployment

Consumer Metrics

Met-
ric

Met-
ric
type

Why care User
impact

How
to
mea-
sure

Records
lag

Per-
for-
mance

Number of messages consumers are behind producers on this partition. The sig-
nificance of these metrics’ values depends completely upon what your consumers
are doing. If you have consumers that back up old messages to long-term storage,
you would expect records lag to be significant. However, if your consumers are pro-
cessing real-time data, consistently high lag values could be a sign of overloaded
consumers, in which case both provisioning more consumers and splitting topics
across more partitions could help increase throughput and reduce lag.

Re-
ports
might
take
longer
to
reflect
the
latest
data.

kafka.consumer_lag

Records
con-
sumed
rate

Through-
put

Average number of records consumed per second for a specific topic or across all
topics.

Re-
ports
might
take
longer
to
reflect
the
latest
data.

kafka.consumer.records_consumed

Fetch
rate

Through-
put

Number of fetch requests per second from the consumer. re-
quests
per
second
from
the
con-
sumer.

kafka.request.fetch_rate

Zookeeper

The Datadog Agent ships with an integration which can be used to collect metrics. See the Zookeeper Integration for
more information.

4.2. Monitoring and Alerting 73

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/zk/?tab=host

CommCareHQ Deployment

Met-
ric

Met-
ric
type

Why care User impact How to
measure

Out-
stand-
ing
re-
quests

Sat-
u-
ra-
tion

This shows the number of requests still to be processed.
Tracking both outstanding requests and latency can give
you a clearer picture of the causes behind degraded per-
formance.

Reports might take
longer to reflect the
latest data.

zookeeper.outstanding_requests

Av-
erage
la-
tency

Through-
put

This metric records the amount of time it takes to respond
to a client request (in ms).

Reports might take
longer to reflect the
latest data.

zookeeper.latency.avg

Open
file
de-
scrip-
tors

Uti-
liza-
tion

Linux has a limited number of file descriptors available,
so it’s important to keep an eye on this metric to ensure
ZooKeeper can continue to function as expected.

Reports might not
reflect new data, as
ZooKeeper will be
getting errors.

zookeeper.open_file_descriptor_count

Celery

The Datadog Agent ships with a HTTP Check integration to collect various network metrics. In addition, CommCare
HQ reports on many custom metrics for Celery. It might be worth having a look at Datadog’s Custom Metrics page.
Celery also uses Celery Flower as a tool to monitor some tasks and workers.

74 Chapter 4. Operations and maintenance

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/http_check/#metrics
https://flower.readthedocs.io/en/latest/

CommCareHQ Deployment

Met-
ric

Met-
ric
type

Why care User impact How
to
mea-
sure

Cel-
ery
up-
time

Avail-
abil-
ity

The uptime rating is a measure of service availability. Background tasks will not exe-
cute (sending of emails, periodic
reporting to external partners, re-
port downloads, etc)

net-
work.http.can_connect

Cel-
ery
up-
time
by
queue

Avail-
abil-
ity

The uptime rating as per queue. Certain background or asyn-
chronous tasks will not get exe-
cuted. The user might not notice
this immediately.

Comm-
Care
HQ
cus-
tom
met-
ric

Time
to
start

Other This metric shows the time (seconds) it takes a task
in a specific queue to start executing. If a certain task
consistently takes a long time to start, it might be worth
looking into.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Block-
age
dura-
tion
by
queue

Through-
put

This metric indicates the estimated time (seconds) a
certain queue was blocked. It might be worth it to alert
if this blockage lasts longer than a specified time.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Task
exe-
cu-
tion
rate

Through-
put

This metric gives a rough estimation of the amount
of tasks being executed within a certain time bracket.
This can be an important metric as it will indicate when
more and more tasks take longer to execute, in which
case an investigation might be appropriate.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Cel-
ery
tasks
by
host

Through-
put

Indicates the running time (seconds) for celery tasks
by host.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Cel-
ery
tasks
by
queue

Through-
put

Indicates the running time (seconds) for celery tasks
by queue. This way you can identify slower queues.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Cel-
ery
tasks
by
task

Through-
put

Indicates the running time (seconds) for celery tasks
by each respective task. Slower tasks can be identified.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Comm-
Care
HQ
cus-
tom
met-
ric

Tasks
queued
by
queue

Sat-
u-
ra-
tion

Indicates the number of tasks queued by each respec-
tive queue. If this becomes increasingly large, keep an
eye out for blockages.

For the most part this might go
unnoticed for the user, but there
will be a delay in the execution
of background tasks, like send-
ing emails, SMS’s, alerts, etc.

Cel-
ery
Flower

Tasks
fail-
ing
by
worker

Er-
ror

Indicates tasks that failed to execute. Increasing
numbers indicates some problems with the respective
worker(s).

If certain background or asyn-
chronous tasks fail, certain fea-
tures become unusable, for ex-
ample sending emails, SMS’s,
periodic reporting etc.

Cel-
ery
Flower

Tasks
by
state

Other This metric shows the number of tasks by their celery
state. If the number of failed tasks increases for in-
stance, it might be worth looking into.

If certain background or asyn-
chronous tasks fail, certain fea-
tures become unusable, for ex-
ample sending emails, SMS’s,
periodic reporting etc.

Cel-
ery
Flower

4.2. Monitoring and Alerting 75

https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/
https://flower.readthedocs.io/en/latest/

CommCareHQ Deployment

RabbitMQ

The Datadog Agent ships with an integration which can be used to collect metrics. See the RabbitMQ Integration for
more information.

Met-
ric

Met-
ric
type

Why care User impact How to
mea-
sure

Queue
depth

Sat-
u-
ra-
tion

Using queue depth, messages ready and messages unac-
knowledged

For the most part this might
go unnoticed for the user,
but there will be a delay
in the execution of back-
ground tasks, like sending
emails, SMS’s, alerts, etc.

rab-
bitmq.queue.messages

Mes-
sages
ready

Other Using queue depth, messages ready and messages unac-
knowledged

For the most part this might
go unnoticed for the user,
but there will be a delay
in the execution of back-
ground tasks, like sending
emails, SMS’s, alerts, etc.

rab-
bitmq.queue.messages_ready

Mes-
sages
un-
ac-
knowl-
edged

Er-
ror

Using queue depth, messages ready and messages unac-
knowledged

Certain background tasks
will fail to execute, like
sending emails, SMS’s,
alerts, etc.

rab-
bitmq.queue.messages_unacknowledged

Queue
mem-
ory

Uti-
liza-
tion

RabbitMQ keeps messages in memory for faster access, but
if queues handle a lot of messages you could consider using
lazy queues in order to preserve memory. Read more

For the most part this might
go unnoticed for the user,
but there will be a delay
in the execution of back-
ground tasks, like sending
emails, SMS’s, alerts, etc.

rab-
bitmq.queue.memory

Queue
con-
sumers

Other The number of consumers is configurable, so a lower-than-
expected number of consumers could indicate failures in
your application.

Certain background tasks
might fail to execute, like
sending emails, SMS’s,
alerts, etc.

rab-
bitmq.queue.consumers

Node
sock-
ets

Uti-
liza-
tion

As you increase the number of connections to your Rab-
bitMQ server, RabbitMQ uses a greater number of file de-
scriptors and network sockets. Since RabbitMQ will block
new connections for nodes that have reached their file de-
scriptor limit, monitoring the available number of file de-
scriptors helps you keep your system running.

Background tasks might
take longer to execute as, or
in the worst case, might not
execute at all.

rab-
bitmq.node.sockets_used

Node
file
de-
scrip-
tors

Uti-
liza-
tion

As you increase the number of connections to your Rab-
bitMQ server, RabbitMQ uses a greater number of file de-
scriptors and network sockets. Since RabbitMQ will block
new connections for nodes that have reached their file de-
scriptor limit, monitoring the available number of file de-
scriptors helps you keep your system running.

Background tasks might
take longer to execute as, or
in the worst case, might not
execute at all.

rab-
bitmq.node.fd_used

76 Chapter 4. Operations and maintenance

https://docs.datadoghq.com/agent/
https://docs.datadoghq.com/integrations/rabbitmq/?tab=host
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.datadoghq.com/blog/rabbitmq-monitoring/#metrics-to-watch-queue-depth-messages-unacknowledged-and-messages-ready
https://www.rabbitmq.com/lazy-queues.html

CommCareHQ Deployment

4.3 Set up Sentry for error logs

sentry.io is an error logging platform that CommCare HQ server is integrated with. This is a guide on how setup this
integration. If you would like to self host Sentry using commcare-cloud, see sentry-on-prem.

4.3.1 Register account on sentry.io

Go to sentry.io to create your account.

As of Dec 2018, there’s a free tier that allows you to log up to 5k errors a month.

Sentry allows you to divide your account into multiple “projects”. To log formplayer errors as well, we recommend
creating a separate projects called “commcarehq” and “formplayer”. If you’d rather not, it should be possible to send
both errors to the same project.

4.3.2 Configure for your account

Each account and project on Sentry will come with its own set of IDs and keys, which you’ll have to store in the
environment configuration failes. A complete configuration looks like this:

public.yml

localsettings:
SENTRY_ORGANIZATION_SLUG: 'organization slug'
SENTRY_PROJECT_SLUG: 'commcare project slug'
Repository name for integrating commits into releases
SENTRY_REPOSITORY: 'dimagi/commcare-hq'

vault.yml

localsettings_private:
SENTRY_DSN: 'https://{key}@sentry.io/{project_id}'
This token is used to create releases and deploys. It needs the 'project:releases'␣

→˓permission.
SENTRY_API_KEY: '{token}'

...
secrets:
FORMPLAYER_SENTRY_DSN: 'https://{key}@sentry.io/{project_id}'
...

For more details see the Sentry docs.

4.3. Set up Sentry for error logs 77

https://sentry.io
https://sentry.io
https://docs.sentry.io/error-reporting/quickstart/?platform=python

CommCareHQ Deployment

4.4 Expectations for Ongoing Maintenance

Like any software project, CommCare HQ requires active maintenance to be kept up-to-date. As project maintainers,
Dimagi frequently makes changes such as library upgrades, bug fixes, feature development, database migrations, and
infrastructure improvements. Whenever possible, these changes are made to be rolled out automatically with a regular
deploy, but occasional larger changes require direct handling to minimize disruptions.

To minimize friction, we recommend that anyone hosting an instance of CommCare HQ commit to keeping their
environment up to date by following the guidelines described on this page. It can become much more challenging to
update an environment that has been neglected for an extended period.

4.4.1 Monitor the developers forum

Subscribe to the developers forum to keep in contact with Dimagi and other parties hosting CommCare. Dimagi will
announce important changes there, such as upcoming upgrades.

4.4.2 Deploy CommCare HQ at least once every two weeks

CommCare HQ is under continuous development, so to ensure you are running an up-to-date version of the code, you
should be deploy changes at least every two weeks.

Some code changes are meant to be rolled out over the course of two or three deploys, which allows us to minimize
or eliminate the disruptions caused by things like backwards-incompatible database changes. It is important for the
developers to be able to make assumptions about how these changes will impact existing environments.

4.4.3 Update commcare-cloud before every deploy and check the changelog

commcare-cloud is developed in conjunction with CommCare HQ. To be on the safe side, it’s best to update just
before deploying CommCare HQ. When you do so, check for new entries in the changelog, which should alert you of
any new changes which might require you to take action. We recommend you take a look through the current entries
to get an idea of what these changes might look like.

Take the action described in each new changelog entry within the compatibility window, if applicable. Aside from
urgent security issues, there should be a window during which you can plan for downtime or for a more involved
upgrade. If you will be unable to apply the change in the window, please reach out on the forum.

After the window expires, Dimagi will drop support for the old version. You may then face additional difficulty in
deploying the change, as well as incompatibility problems on your server.

4.5 Supporting Your Users

The following guide explains how to set up processes/systems in order to provide support to various users who may
interact with your CommCare HQ instance such as mobile users, application building teams and reporting teams etc.

78 Chapter 4. Operations and maintenance

https://forum.dimagi.com/c/developers/5
https://github.com/dimagi/commcare-cloud/blob/master/docs/changelog/index.md

CommCareHQ Deployment

4.5.1 Why set up a Support System

CommCare is a powerful technology that caters to programs of different nature from simple data collection from a few
hundred users to large scale deployment of millions of users. As with any technology, users using CommCare will need
support beyond the user documentation to be successful at their job. To this extent, setting up a robust support system
becomes essential for the success of any project in which CommCare is set.

Identifying stakeholders

Projects using CommCare often have stakeholders who use and interact with CommCare HQ in different ways and they
often have varied levels of technical expertise. Some examples of the stakeholders are community health / frontline
workers (CHWs / FLWs), supervisors who monitor the FLWs, Monitoring and Evaluation (M&E) staff and data teams
that deal with the data analytics and reporting side of the program, project team that is managing the CommCare HQ
project setup and high level program staff. These users interact with CommCare mobile and server in different ways
and will need different types of support.

Below are some example support issues that might come up from various stakeholders of the program

• An FLW not being able to sync or submit data to CommCare HQ server

• A project team member not seeing upto data on system

When setting up a support system we recommend you to do an exercise of identifying the stakeholders in your program
and think through the program/technical workflows that these stakeholders would be part of and the potential issues
that they might encounter.

4.5.2 Components of a Support System

A good support system should have the following components:

• Training and documentation with common support questions and issues for end users

• Support channels for users to get the support they need

• Support team members

• Support processes and tools to track, triage, troubleshoot and escalate incoming issues

Below we give details on each component.

Training and Documentation

A major portion of support issues end up being simply queries from users who may not know how to perform an action.
The best way to avoid these is by providing training at the time of onboarding the users and documentation on how to
use the system.

The documentation should also contain common queries that users might have. The support process should allow for
these docs to be continuously updated as new repeating support queries are raised.

4.5. Supporting Your Users 79

https://confluence.dimagi.com/display/commcarepublic/Home/
https://confluence.dimagi.com/display/commcarepublic/Home/

CommCareHQ Deployment

Support Channels for users to get the support they need

Support channels are required to enable communication between the end users facing an issue and the support team
who have the expertise to resolve the issues. There are various possible support channels depending on how the support
process is set up.

• Report an Issue from CommCare app. For this,

– An FLW/CHW should be trained to use ‘Report an Issue’ in the CommCare mobile.

– When not able to use the app CHW/FLW should have an offline mechanism of reporting issues to supervi-
sors or higher level program staff for support.

• ‘Report an Issue’ button on CommCare HQ Server

• Support Email: Higher level program staff should have access to a Direct support email address that auto creates
tickets in a helpdesk app.

• An issue tracker CommCare application that has ‘Raise an Issue’ module which tracks the issues for all FLWs
for supervisor’s reference

These channels are suitable for different stakeholders of the program depending on the level of their expertise in being
able to communicate online. For example, a frontline worker may not be able to communicate via email with support
in which case a direct phone support with a supervisor can be more easy. On the other hand if there are too many FLWs
under a supervisor where a phone support is not possible, an Issue Tracker application could be useful.

80 Chapter 4. Operations and maintenance

./images/support_team.jpg

CommCareHQ Deployment

Support team

Support team could be a one or multi person team of experts who have a good overall understanding of the system and
can troubleshoot and answer various issues coming from the users. The team should have direct access to developer
team members who can troubleshoot issues that are beyond the scope of the support team’s knowledge. The team will
also need administrative level access to troubleshoot certain issues. The program and developer team should create
policies to enable the support team without compromising on the security. The support team would also own the
overall support process and improve it as necessary to achieve higher Service Level Agreements (SLAs).

Support Processes

The support process is a defined process of how incoming support issues are handled from receiving the issues up till
the resolution of these issues.

In its simplest form the support process might involve a developer answering all the issues from all the users of the
system either via email or via phone by keeping track of these issues simply in an email or list of notes. This could work
when the program is very small. This process would break down when the number of users increase even slightly. For
programs of anything more than 20 FLWs we recommend a proper support process to handle and resolve all incoming
issues in a timely manner.

Depending on the scale and complexity of the program either a basic or advanced process would become necessary.
Below we describe the two processes in detail.

Basic Support Process and Tools

At a minimum, we recommend the below setup for handling support.

• Set up a helpdesk app such as Jira, Zendesk or other open source helpdesk app. Or if you are already using a
project management software, you could use that instead.

• Set up a dedicated support email where all support queries can be sent to either via directly or via Report an
Issue button on CommCare HQ. Configure this in your server using support email param in your environment.

• Integrate the helpdesk software with the support email such that all the incoming emails create individual tickets
in the helpdesk software.

• Helpdesk software should have below fields

– Title and Description of the issue

– Status: To describe the status of the ticket such as incoming, waiting for user’s input, being worked on and
resolved etc as you see fit

– Assignee: This allows the ticket to be passed between various team members depending on their expertise.

– Priority: This is a very important field. Please see below the section on priority

– Any additional fields as you see fit for project management needs.

• Onboard various members of support, program and developer team members to the helpdesk app as necessary.

4.5. Supporting Your Users 81

https://github.com/dimagi/commcare-cloud/blob/master/environments/staging/public.yml#L53/

CommCareHQ Deployment

Priority field

A priority level such as P1, P2, P3, P4 etc that describes the urgentness of the ticket and the number of users it’s
affecting. It’s good to have a team-wide common definition on what each priority level means and document it in a
relevant place for everyone’s reference. Below is a suggested priority level based on Dimagi’s support process.

• P1 : Severe (a blocker), don’t do anything else. May have to sleep less tonight. There is (business loss) already.
The longer it’s not fixed, the longer the product and the team are in failure state. Examples: Site down, data loss,
security breakdown etc.

• P2 : A problem which has made an important/critical function unusable or unavailable and no workaround exists.
Examples: All users not being able to sync with server.

• P3 : High (Should be fixed), if not fixed, will lose integrity in product. Example: Pillows falling behind by a
large backlog.

• P4 : Normal (Should be fixed, time and resources permitting)

• P5 : Low

The priority level helps the entire support team and developers to understand how they should prioritize the particular
ticket. A support team member triaging the ticket can setup the priority.

Ticket Workflow

Once the support system is set up below is a general process that can be followed. Note that for P1/P2 we recommend
a separate on-call like process stated in the P1/P2 Process recommendations.

82 Chapter 4. Operations and maintenance

CommCareHQ Deployment

• An issue is reported view UI or directly

• A ticket is created in helpdesk app automatically or support creates it if the issue is reported via email/chat.

• When a new ticket arrives,

– A support team member performs the initial investigation

– If more information is required to resolve the issue the user is contacted for more information.

– If the ticket fits P1/P2 criteria, follow P1/P2 process

– Support team member updates the fields of the ticket such as priority, status and assignee.

– Depending on the ticket, the support team member might resolve and respond back to the user or escalate
it to a different team member from the program or developer team.

– If the ticket priority is low, the team might put it into a backlog that can be reviewed later.

– If the team is not able to get resolve, the ticket can be reported to Dimagi support directly if the team has a
support plan or else to the public CommCare developers forum

• Once the resolution is found the support team member sends the resolution to the user and closes the ticket after
updating relevant ticket fields.

Apart from this a regular periodical (weekly or biweekly) team calls could also be used to coordinate the overall support
activities.

4.5. Supporting Your Users 83

./images/local_hosting_support_workflow.png

CommCareHQ Deployment

P1/P2 Process

The standard support process stated above works well for tickets with priority lower than P2. As defined above tickets
with priority P1 indicate a very urgent ticket that affects all users, which may be causing a downtime or irreversible data
loss/corruption or other critical issues. P2 priority indicates a critical function being available that might soon result
in a P1 issue if neglected. Given that there is a lot of urgency tied to P1 and P2, we recommend a separate process to
resolve these issues.

The intention of a separate P1/P2 process is to address below unique expectations associated with P1 or P2 incidents.

1. Fix the issue as soon as possible

2. Establish communication with users and stakeholders to inform about the issue

3. Followup Actions such as Root Cause Analysis to prevent issues like this from getting repeated

We recommend below a general process that addresses these three expectations. You may tweak it as you see fit in your
organizational context or even create your own process but in the least it should address the above three expectations.

Process for P1/P2

1. Kick off the process

a) Create a ticket and mark it’s priority to P1

b) Form and gather an Incident Response Team consisting of a Developer lead who is the main developer to
resolve the issue, a Response manager who makes sure the developer has all the resources to resolve the
issue other strategic planning around the issue and Support lead to handles communication with external
users and internal teams

c) Do a P1 call with Incident Response Team members to troubleshoot and co-ordinate next steps on the issue.
Create a shared live P1 document to add notes on the issue.

d) Response manager or support lead announces the issue in the internal and external channels to let various
stakeholders be informed about the issue. Various mechanisms exist to facilitate this

i) Dedicated internal/external chat groups

ii) CommCare HQ Alerts Page (<yourhqserver.com>/alerts) has an alerts page where a new banner can
be set up if the site is not down.

iii) Tools such as statuspage.io

2. Manage the issue

a) Response manager or support lead should periodically check in with the developer lead to understand the
status and make sure the developer lead has all the support to resolve the issue in a timely manner.

b) Post updates on the communication channels regarding the status and ETA.

3. After the issue is resolved

a) Announce that the issue is resolved on various communication channels

b) Take down any banners or update tools such as statuspage.io

c) Change the priority of the ticket from P1 to other appropriate priority.

d) Update the status of the ticket to ‘Pending Retro’

4. Doing a Retrospective

84 Chapter 4. Operations and maintenance

CommCareHQ Deployment

a) Ask the developer lead to create a retrospective document that details the root cause of the issue and steps
to be taken to prevent such issue from repeating in the future. The developer can use techniques such as
Five Whys to do the retrospective.

b) Schedule a Retrospective meeting with a wider team to discuss the retrospective and do a postmortem
analysis on the ticket to arrive at a comprehensive list of action items to prevent such issues from repeating
and make process related improvements to minimize the resolution time.

The main difference between a P1 and P2 issue is the urgency with which the issue needs to be resolved. The same
process is recommended for P2 issues with relaxations in urgency which means it may not need as frequent and close
monitoring as P1.

Advanced Support Process and Tools

Programs that are very large scale could produce a very high volume of support tickets that need to be resolved under
SLAs. This requires more advanced support systems to be setup at multiple levels of the program in an escalating
manner. This often needs to be planned as a core facet of the program from the ground up. A support system at this
level usually consists of

• Issue Tracker Applications to supervisors to support FLWs

• Helpdesks at District/Block level and escalation process

• Program level support team at the top

• View into SLAs

There is no general setup that can be recommended to all the projects as each program has different needs at scale.

4.5.3 Support System Implementation checklist

As discussed in Components of a Support System, in order to implement a good support system all of the necessary
components need to be in place. You can use the below checklist to make sure you have a robust support system in
place.

1. Make sure enough training material and documentation exists for end users to prevent support queries.

2. Establish support channels with various stakeholders

3. Create a support team

4. Create documentation that outlines

a) Definitions of various priorities

b) The support processes for regular and P1/P2 tickets.

4.5. Supporting Your Users 85

https://en.wikipedia.org/wiki/Five_whys

CommCareHQ Deployment

86 Chapter 4. Operations and maintenance

CHAPTER

FIVE

HOW TO SCALE

This section contains guides on how to test your CommCare HQ instance’s performance and how to estimate sizing for
higher number of users using a tool called commcare_resource_model.

The hardware requirements required for instances under 15,000 mobile users is given at Hardware requirements and
Deployment Options. This section is intended to provide information on how to scale CommCare HQ for projects going
beyond 15,000 mobile users.

5.1 Performance Benchmarking for CommCare HQ using Locust

5.1.1 Introduction

Performance testing is useful to understand how well your CommCare HQ instance performs under a given load. The
results of this testing will inform any bottlenecks in your setup and how to scale it for more number of users.

Dimagi uses Locust, and scripts stored in the commcare-perf repository, for performance benchmarking apps on Comm-
Care HQ.

The commcare-perf repository includes instructions for installing the scripts.

See Locust’s documentation for running Locust in Docker.

5.1.2 Getting started

1. Start Locust with a web interface:

(venv) $ locust -f locustfiles/form_submission.py

2. Open http://localhost:8089 in a browser.

3. You will be asked the number of users to simulate, and their spawn rate. Start with 1 user, at a spawn rate of 1
user per second, and click the “Start swarming” button.

4. Locust will show you a table of statistics. You can switch to the “Charts” tab to see requests per second, response
times, and the number of simulated users.

87

http://github.com/dimagi/commcare_resource_model
https://locust.io/
https://github.com/dimagi/commcare-perf/
https://docs.locust.io/en/stable/running-locust-docker.html\T1\textgreater {}
http://localhost:8089

CommCareHQ Deployment

5. Click “Stop” and increase the number of users to see how CommCare is affected.

5.1.3 Submitting your own forms

locustfiles/form_submission.py uses three example form submissions for testing. They are saved in the
xforms/ directory.

If you would like to use your own form submissions, you can find them in CommCare.

1. Navigate to “Reports” > “Case List”, and find a sample case with test data. (Do not use a real case.)

2. Select the case, and choose the “Case History” tab.

3. Select a form. (If you select the form that registered the case, you will get duplicate cases.)

4. Choose “Raw XML”.

5. Copy and paste the XML into a file and save it in the xforms/ directory.

6. Repeat steps 1 to 5 for as many forms as you wish to submit.

7. locustfiles/form_submission.py will submit all the files it finds in the xforms/ directory. If you don’t
want to use the original examples, just delete them.

8. Restart Locust to test using your form submissions.

88 Chapter 5. How to Scale

CommCareHQ Deployment

5.1.4 Saving results

In Locust, switch to the “Download Data” tab.

Here you can download the report, and various data in CSV format.

5.2 How to Estimate Infrastructure Sizing

CommCare HQ has a distributed architecture and each service can be scaled horizontally as more users are added to
the project. Gradual scaling by adding resources as and when needed is the best way to scale a CommCare HQ project.
This works well in cloud environments where resources can be procured instantaneously. But this doesn’t work well
when doing on-premise hosting where the infrastructure is bought one time exclusively for the project and there isn’t
a flexibility to gradually add resources. So, a way to estimate the infrastructure required for a given number of users
becomes necessary.

Given that CommCare HQ is a complex distributed application, estimating infrastructure sizing for a given number of
users is a complex task, and it’s often more of an art than science as it requires keen observation of resource usage at
different points of load for a given number of users.

5.2. How to Estimate Infrastructure Sizing 89

CommCareHQ Deployment

5.2.1 commcare_resource_model

The infrastructure required to scale to a higher specific number of users can be obtained by examining the amount of
resources (storage, RAM and CPU) that are getting used for a known current number of users. One most brute way to
estimate the resource requirement would be to directly increase the hardware proportionate to the number of users. For
e.g. if the system resources are all at their full capacity for 1000 users, to scale to 2000 users approximately a double
amount of resources will be necessary.

But in practice, it will be more accurate to analyze the correlation between number of users and corresponding resource
usage via load parameters such as form submissions, case creations, case updates, multimedia submissions and syncs
etc that affect the resource usage more directly and then use these ratios to estimate for higher number of users. Such
analysis could be done by examining the resource usage for a given time period.

Once these load parameters and the relation to resource usage ratios are obtained, calculations can be done using a
simple excel calculator to proportionately estimate the resources required for a higher number of users, but it would be
complicated to manage/modify such an excel calculator.

For this reason, we have developed a python based tool called commcare_resource_model. It takes a config file con-
taining values for various user load and resource capacity parameters and ratios to estimate the resources required for
higher user loads. Once the script is run for the given config, it will generate an excel file containing the resource
estimates for a higher number of users.

One limitation of this tool or more correctly the limitation of the sizing methodology used in this tool is that the resource
capacity must be known for each individual service. This is easy when each service is hosted on a different machine.
When multiple services share a resource, it is not possible to estimate the resource capacity per each individual service.
The tool can be still used for storage estimation as it is easy to examine the storage usage per each individual service
as there are separate data directories for each service.

5.2.2 How to use commcare_resource_model

Note that commcare_resource_model can be used to estimate sizing only when a baseline usage and load data is avail-
able after CommCare HQ has been used for a given number of users. It can’t be used for estimating sizing for a new
project. To understand what infrastructure you need for a new project please refer to sizing-buckets.

The general process for using commcare_resource_model is below.

1. Install the commcare_resource_model python tool

2. Create a configuration file that specifies number of users to be scaled to, load and usage parameters from your
existing environment

3. Run the script

The configuration file has three main sections that specifies the baseline usage and load of the system. Below are the
three sections.

• Usage section Under this section all usage parameters such as number of users by date ranges and its correlation
to load parameters (form submissions, case creations, case updates, multimedia submissions and syncs etc) can
be listed. These numbers and ratios can be obtained by project_stats_report management command and also by
examining the individual services, processes running one each VM.

• Services section for resource calculations for each service. This section can refer to one or more usage parameters
from usage section which specifies the amount of usage that resource can handle.

• Summary dates The dates for which the resources need to be estimated.

• Additional parameters such as estimation_buffer, storage_display_unit etc are available.

Please refer to the docs for this tool to get an understanding of how to use this tool.

90 Chapter 5. How to Scale

http://github.com/dimagi/commcare_resource_model
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/reports/management/commands/project_stats_report.py
https://github.com/dimagi/commcare_resource_model/blob/master/README.md

CHAPTER

SIX

COMMCARE HQ SERVICES GUIDES

CommCare HQ uses many services such as Django, PostgreSQL, BlobDB, Kafka and many more. This section has
information how a service is used and how to perform various operations related to the service.

6.1 PostgreSQL

Table of Contents

• PostgreSQL

– Usage in CommCare

– Configuration

6.1.1 Adding a postgresql hot standby node

The PostgreSQL standby is a hot standby (accept reads operations only) of each production database. Each Database
node should have standby node configured and deployed. This will require configuring in the environment inventory
files to set variables as follows:

On primary node

• hot_standy_server (points to standby server)

• postgresql_replication_slots (list of replication slots)

– replication slots should be formatted a list as follows:

∗ CSV invenory: “[“”slot1””,””slot2””]”

∗ INI inventory: [“slot1”,”slot2”]

91

CommCareHQ Deployment

On the standby node

• hot_standby_master (point to primary)

• replication_slot (which replication slot to use)

• Add node to pg_standby group

To deploy the standby nodes we’d first need to create the replication slots in the primary. We normally use ansible
playbook to perform this

$ commcare-cloud ap deploy_postgresql.yml --limit <primary host>

Note:- In case if a restart is not desired then this command can be used.

$ commcare-cloud <env> run-shell-command <primary-node> -b --become-user=postgres "psql -
→˓d <database name> -c "'"'"SELECT * FROM pg_create_physical_replication_slot('<slot␣
→˓name>')"'"'""

After that we can use the setup_pg_standby.yml playbook

$ cchq <env> ap setup_pg_standby.yml -e standby=[standby node]

6.1.2 Promoting a hot standby to master

1. In your inventory you have two postgresql servers defined:

• pg_database with postgresql_replication_slots = ["standby0"]

• pg_standby where hot_standby_master = pg_database and replication_slot = "standby0"

2. Begin downtime for your site:

$ commcare-cloud <env> downtime start

3. Verify that the replication is up to date

$ commcare-cloud <env> run-shell-command pg_database,pg_standby 'ps -ef | grep -E
→˓"sender|receiver"'

[pg_database] ps -ef | grep -E "sender|receiver"
postgres 5295 4517 0 Jul24 ? 00:00:01 postgres: wal sender process rep 10.116.

→˓175.107(49770) streaming 0/205B598
[pg_standby] ps -ef | grep -E "sender|receiver"
postgres 3821 3808 0 Jul24 ? 00:01:27 postgres: wal receiver process streaming␣

→˓0/205B598

Output shows that master and standby are up to date (both processing the same log).

4. Promote the standby

$ commcare-cloud <env> ansible-paybook promote_pg_standby.yml -e standby=pg_standby

5. In your inventory remove hot_standby_master and replication_slot variables from your standby
node,

and move the node from the pg_standby group to the postgresql group.

92 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

6. Update the host for the applicable database(s) in postgresql.yml and update your processes to point to
the newly

promoted server:

$ commcare-cloud <env> update-config

7. If the standby you’ve promoted is one of the form_processing databases update the PL proxy cluster configu-
ration:

$ commcare-cloud <env> django-manage --tmux configure_pl_proxy_cluster

8. [Optional] If you have configured your standby and master nodes to use different parameters, or
you would like to create replication slots on the newly promoted standby update those configurations:

$ commcare-cloud <env> ap deploy_db.yml --limit pg_database,pg_standby

9. End downtime for your site:

$ commcare-cloud <env> downtime end

10. If you would like to have another standby for this newly promoted master, follow above instructions for adding a
standby database.

6.1.3 Splitting a shard in postgresql

This document describes the process required to split a partitioned database from one PostgreSQL instance into itself
and another. This migration will require downtime.

Assumptions

For the purposes of this document we’ll assume that we have three database machines, pg1 , pg2 and pg3. pg1 has one
database and pg2 and pg3 has none:

pg1 databases:

• commcarehq_p1 (with django alias p1)

pg2 and pg3 is a newly deployed server in the [postgresql] group and we want to create a new commcarehq_p2 on pg2
and commcarehq_p3 on pg3 with half the data from commcarehq_p1 on each.

pg1 is currently the only database containing sharded data. Half of the data should be moved to a new pg2 and pg3
servers

Current database configuration:

PARTITION_DATABASE_CONFIG = {
'shards': {

'p1': [0, 3],
},
'groups': {

'main': ['default'],
'proxy': ['proxy'],
'form_processing': ['p1'],

},
}

(continues on next page)

6.1. PostgreSQL 93

CommCareHQ Deployment

(continued from previous page)

DATABASES = {
'proxy': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'commcarehq_proxy',
'USER': 'commcarehq',
'PASSWORD': 'commcarehq',
'HOST': 'pg1',
'PORT': '5432',
'TEST': {

'SERIALIZE': False,
},

},
'p1': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'commcarehq_p1',
'USER': 'commcarehq',
'PASSWORD': 'commcarehq',
'HOST': 'pg1',
'PORT': '5432',
'TEST': {

'SERIALIZE': False,
},

},
}

At the end of this process shards 0 & 1 should be on pg2 and shards 2 & 3 will be on pg3.

Important Notes

By default pglogical does not replicate any DDL commands. This means that any CommCare HQ migrations may not be
applied to the target databases while logical replication is active. It is recommended to not deploy any changes during
the time when splitting the database. More technical information can be found at https://github.com/2ndQuadrant/
pglogical/blob/REL2_x_STABLE/docs/README.md#ddl

Process Overview

1. Ensure that pg1 is set to use logical replication

2. Setup pg2 and pg3 as a new database

3. Setup logical replication from pg1 to pg2 and pg3

4. Promote pg2 and pg3 to a master node

5. Update the applications configuration to go to pg2 and pg3

94 Chapter 6. CommCare HQ Services Guides

https://github.com/2ndQuadrant/pglogical/blob/REL2_x_STABLE/docs/README.md#ddl
https://github.com/2ndQuadrant/pglogical/blob/REL2_x_STABLE/docs/README.md#ddl

CommCareHQ Deployment

Process detail

1. Setup logical replication on pg1

In your inventory file set the following vars for pg1:

[pg1]
...
postgresql_wal_level = logical
postgresql_max_worker_processes = 8
postgresql_shared_preload_libraries = ["pglogical"]

Also ensure that your replication user has superuser privileges on all databases, in vault.yml:

POSTGRES_USERS:
replication:
username: 'foo'
password: 'bar'
role_attr_flags: 'LOGIN,REPLICATION,SUPERUSER'

In postgresql.yml:

postgresql_hba_entries:
- contype: host
users: foo
netmask: 'pg2 ip address'

- contype: host
databases: replication
users: foo
netmask: 'pg2 ip address'

- contype: host
users: foo
netmask: 'pg3 ip address'

- contype: host
databases: replication
users: foo
netmask: 'pg3 ip address'

Then deploy these settings to your databases:

commcare-cloud <env> ap deploy_db.yml --limit=pg1,pg2,pg3

2. Setup pg2 and pg3

Setup pg2 and pg3 as you would another postgresql database in commcare-cloud.

In addition to normal setup, add the following to your postgresql.yml file:

dbs:
logical:
- name: commcarehq_p2
host: pg2
master_host: pg1

(continues on next page)

6.1. PostgreSQL 95

CommCareHQ Deployment

(continued from previous page)

master_db_name: commcarehq_p1
replication_set: [0, 1]

- name: commcarehq_p3
host: pg3
master_host: pg1
master_db_name: commcarehq_p1
replication_set: [2, 3]

Deploy this change to your databases using:

commcare-cloud <env> ap setup_pg_logical_replication.yml

This will begin the replication process in the background which replicates one table at a time. To check the progress:

ANSIBLE_DISPLAY_SKIPPED_HOSTS=False commcare-cloud <env> ap setup_pg_logical_replication.
→˓yml --tags=status

TASK [All subscriber status] *****************
ok: [pg2] => {

"msg": [
[

{
"show_subscription_status": "(sub_name,initializing,provider_name,\

→˓"connection_string\",internal_pg_logical_name,{subscription},{all})"
}

]
]

}

In the above output initializing means that the database is copying from the original to the new database. Once
complete it will change to replicating

3. Stop all DB requests

Once the databases are fully replicated and you are ready to switch to the new databases, bring the site down.

Stop all CommCare processes

commcare-cloud <env> downtime start

Stop pgbouncer

commcare-cloud <env> service postgresql stop --only pgbouncer --limit pg1,pg2,pg3

Verify that the replication is up to date by ensuring replay_location and sent_location are the same for each
database:

ANSIBLE_DISPLAY_SKIPPED_HOSTS=False commcare-cloud <env> ap setup_pg_logical_replication.
→˓yml --tags=status --limit=pg1
ok: [100.71.184.26] => {

"msg": [
[

(continues on next page)

96 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

(continued from previous page)

{
"application_name": "commcarehq_p2_0_1_sub",
"replay_location": "2058/4C93E6B0",
"sent_location": "2058/4C93E6B0"

}
],
[

{
"application_name": "commcarehq_p3_2_3_sub",
"replay_location": "2058/4C93E6B0",
"sent_location": "2058/4C93E6B0"

}
]

]
}

Synchronize the sequences:

ANSIBLE_DISPLAY_SKIPPED_HOSTS=False commcare-cloud <env> ap setup_pg_logical_replication.
→˓yml --tags=synchronize_sequences --limit=pg1

4. Update configuration

Update ansible config
Update the dbs variable in the environment’s postgresql.yml file to show that the p2 database is now on pg2:

...
dbs:
...
form_processing:
...
partitions:

- p1:
- shards: [0, 3]
- host: pg1
+ p2:
+ shards: [0, 1]
+ host: pg2
+ p3:
+ shards: [2, 3]
+ host: pg3

...

Deploy changes

update localsettings
commcare-cloud <env> update-config

update PostgreSQL config on new PG node
commcare-cloud <env> ap deploy_db.yml --limit=pg2,pg3

(continues on next page)

6.1. PostgreSQL 97

CommCareHQ Deployment

(continued from previous page)

update the pl_proxy cluster
commcare-cloud <env> django-manage --tmux configure_pl_proxy_cluster

To remove the logical replication run the following on all subscriber databases:

SELECT pglogical.drop_node(sub_name, true)

5. Restart services

start pgbouncer

commcare-cloud <env> service postgresql start --only pgbouncer --limit pg2,pg3

Restart services

commcare-cloud <env> downtime end

6.1.4 Moving a PostgreSQL sharded database

For large scale deployments of CommCare HQ the database tables that contain case and form (and related) data can be
partitioned between multiple PostgreSQL databases.

To ease the burden of scaling it is common to create as many databases as necessary up front since splitting databases
is much more difficult than moving databases. In this case a deployment of CommCare HQ may start with a single
database server that contains all the databases. As the project scales up more database servers can be added and the
databases can be moved to spread the load.

This document describes the process required to move a database from one PostgreSQL instance to another.

For the purposes of this document we’ll assume that we have two database machines, pg1 and pg2. pg1 has two
partitioned databases and pg2 has none:

pg1 databases:

• commcarehq_p1 (with django alias p1)

• commcarehq_p2 (with django alias p2)

pg2 is a newly deployed server and we want to move commcarehq_p2 onto pg2.

Assumptions

• pg2 has been added to the Ansible inventory and included in the [postgresql] group

• pg2 has had a full stack Ansible deploy

• pg1 has a replication slot available

98 Chapter 6. CommCare HQ Services Guides

https://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION-SLOTS

CommCareHQ Deployment

Process Overview

1. Setup pg2 node as a standby node of pg1

2. Promote pg2 to a master node

3. Update the configuration so that requests for p2 go to pg2 instead of pg1.

Process detail

1. Setup pg2 as a standby node of pg1

This step does not require downtime and can be done at any stage prior to the downtime.

commcare-cloud <env> ansible-playbook setup_pg_standby.yml -e standby=pg2 -e hot_standby_
→˓master=pg1 -e replication_slot=[replication slot name]

2. Stop all DB requests

This will bring the CommCare HQ site down.

Stop all CommCare processes

commcare-cloud <env> service commcare stop

You may have to wait for any long running celery tasks to complete. You can list any celery workers that are still
running using the following commands:

commcare-cloud <env> django-manage show_celery_workers
commcare-cloud <env> run-shell-command celery "ps -ef | grep celery"

Stop pgbouncer To be completely certain that no data will be updating during the move you can also prevent connec-
tions from pgbouncer:

pg1 $ psql -p 6432 -U someuser pgbouncer

> PAUSE commcarehq_p1

3. Check document counts in the databases

This step is useful for verifying the move at the end.

commcare-cloud <env> django-manage print_approximate_doc_distribution --csv

6.1. PostgreSQL 99

CommCareHQ Deployment

4. Update configuration

Update ansible config
Update the dbs variable in the environment’s postgresql.yml file to show that the p2 database is now on pg2:

...
dbs:
...
form_processing:
...
partitions:
p1:
shards: [0, 1]
host: pg1

p2:
shards: [2, 3]

- host: pg1
+ host: pg2

...

Deploy changes

update localsettings
commcare-cloud <env> update-config

update PostgreSQL config on new PG node
commcare-cloud <env> ap deploy_db.yml --limit=pg2

5. Verify config changes

commcare-cloud <env> django-manage print_approximate_doc_distribution --csv

This should show that the p2 database is now on the pg2 host.

6. Promote pg2 to master

Verify that replication is up to date

commcare-cloud <env> run-shell-command pg1,pg2 'ps -ef | grep -E "sender|receiver"'

[pg1] ps -ef | grep -E "sender|receiver"
postgres 5295 4517 0 Jul24 ? 00:00:01 postgres: wal sender process rep 10.116.175.

→˓107(49770) streaming 0/205B598

[pg2] ps -ef | grep -E "sender|receiver"
postgres 3821 3808 0 Jul24 ? 00:01:27 postgres: wal receiver process streaming 0/

→˓205B598

Output shows that master and standby are up to date (both processing the same log).

Promote pg2

100 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

commcare-cloud <env> run-shell-command pg2 -b 'pg_ctlcluster <pg version> main promote'

7. Verify doc counts

Re-run command from step 5 to verify that the document counts are the same.

8. Update pl_proxy config

commcare-cloud <env> django-manage configure_pl_proxy_cluster

9. Restart services

Unpause pgbouncer

pg1 $ psql -p 6543 -U someuser pgbouncer

> RESUME commcarehq_p1

Restart services

commcare-cloud <env> service commcare start

10. Validate the setup

One way to check that things are working as you expect is to examine the connections to the databases.

SELECT client_addr, datname as database, count(*) AS connections FROM pg_stat_activity␣
→˓GROUP BY client_addr, datname;

pg1 should only have connections to the commcarehq_p1 database

client_addr | database | connections
----------------+------------+------------
<client IP> | commcarehq_p1 | 3

pg2 should only have connections to the commcarehq_p2 database

client_addr | database | connections
----------------+------------+------------
<client IP> | commcarehq_p2 | 3

6.1. PostgreSQL 101

CommCareHQ Deployment

11. Cleanup

Delete duplicate databases
Once you’re confident that everything is working correctly you can go back and delete the duplicate databases on pg1
and pg2.

pg1

DROP DATABASE commcarehq_p2;

pg2

DROP DATABASE commcarehq_p1;

Drop replication slot
In order to prevent the WAL logs on pg1 from piling up we need to delete the replication slot that was used by pg2:

commcare-cloud <env> run-shell-command p1 -b --become-user postgres 'psql -c "select pg_
→˓drop_replication_slot('\'<slot name>\'');"'

optionally re-create the slot
commcare-cloud <env> run-shell-command p1 -b --become-user postgres 'psql -c "select pg_
→˓create_physical_replication_slot('\'<slot name>\'');"'

Update PostgreSQL config

commcare-cloud <env> ap deploy_db.yml --limit=postgresql

Other useful commands

Check which nodes are in recovery

commcare-cloud <env> run-shell-command postgresql -b --become-user postgres "psql -c
→˓'select pg_is_in_recovery();'"

Check replication slot status

commcare-cloud <env> run-shell-command postgresql -b --become-user postgres "psql -c
→˓'select * from pg_replication_slots;'"

6.1.5 Upgrading PostgreSQL

1. Ensure that you have a full backup of all PostgreSQL data before starting the upgrade process.

2. Review the PostgreSQL documentation for the pg_upgrade tool.

3. Test the upgrade process locally with Vagrant or on a test environment.

In the below instructions:

HOSTS-TO-UPGRADE: list of hosts / host groups to upgrade include standbys
OLD-VERSION: Current version of PostgreSQL that is running

(continues on next page)

102 Chapter 6. CommCare HQ Services Guides

https://www.postgresql.org/docs/current/pgupgrade.html

CommCareHQ Deployment

(continued from previous page)

NEW-VERSION: Version being upgraded to
OLD-PORT: Port that PostgreSQL is currently running on (defaults to 5432)

Upgrade preparation

1. Run the deploy_postgres.yml playbook to ensure your system is up to date

commcare-cloud <env> ap deploy_postgres.yml --limit HOSTS-TO-UPGRADE

2. Update PostgreSQL version and port

postgresql.yml

postgres_override:
postgresql_version: NEW-VERSION
postgresql_port: NEW-PORT # this must be different from the current PostgreSQL port

3. Run the deploy_postgres.yml playbook to install the new version of PostgreSQL

commcare-cloud <env> ap deploy_postgres.yml --limit HOSTS-TO-UPGRADE --tags postgresql

Perform the upgrade

1. Stop all processes connecting to the databases

commcare-cloud <env> run-module HOSTS-TO-UPGRADE service "name=pgbouncer state=stopped"

2. Run the upgrade playbooks

The following commands can be used to perform the upgrade:

commcare-cloud <env> ansible-playbook pg_upgrade_start.yml --limit HOSTS-TO-UPGRADE \
-e old_version=OLD-VERSION -e new_version=NEW-VERSION [-e old_port=OLD-PORT]

commcare-cloud <env> ansible-playbook pg_upgrade_standbys.yml --limit HOSTS-TO-UPGRADE \
-e old_version=OLD-VERSION -e new_version=NEW-VERSION [-e old_port=OLD-PORT]

commcare-cloud <env> ansible-playbook pg_upgrade_finalize.yml --limit HOSTS-TO-UPGRADE \
-e old_version=OLD-VERSION -e new_version=NEW-VERSION

Follow the instructions given in the play output.

6.1. PostgreSQL 103

CommCareHQ Deployment

3. Revert to using the old port

Once you are satisfied with the upgrade you can revert the port change in postgresql.yml and apply the changes.

commcare-cloud <env> ansible-playbook deploy_postgres.yml --limit HOSTS-TO-UPGRADE

4. Upgrade the psql client

Once the postgres upgrade is completed, update the psql client on all hosts

commcare-cloud <env> ansible-playbook deploy_common.yml

6.1.6 Migrate plproxy to new node

This Migration doesn’t require downtime since the databases do not contain any data.

1. Update the new node in env config:

• Replace the old nodes in <env>/postgresql.yml with new nodes

2. Run cchq <env> deploy-stack --limit=<new nodes> on new nodes.

3. Run cchq <env> update-config --limit=django_manage

• Expect to see changes to django settings for this server

4. Validate on django_manage machine:

• Log into django_manage machine, switch to cchq user, navigate to /home/cchq/<env>/current/
and activate python virtual environment

• Run python manage.py configure_pl_proxy_cluster --create_only

• Run env CCHQ_IS_FRESH_INSTALL=1 python manage.py migrate --database <Django DB
alias Name> (proxy,proxy_standby)

• Validate settings

– python manage.py check_services

– python manage.py check --deploy -t database

5. Run cchq <env> update-config (no limit)

6. Restart mobile webworkers

• cchq <env> service commcare restart --limit=mobile_webworkers

7. Check for errors

• Load the site in a browser

• Watch monitoring dashboards for errors

• Watch Sentry for errors

8. Restart remaining services

• cchq <env> service commcare restart --limit= 'all:!mobile_webworkers'

9. Check for errors again (see step 7)

10. Cleanup:

104 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

• Remove old plproxy nodes from env config (inventory etc)

6.1.7 Upgrading CitusDB

1. Ensure that you have a full backup of all PostgreSQL data before starting the upgrade process.

2. Review the documentation:

• pg_upgrade

• citus

3. Test the upgrade process locally with Vagrant or on a test environment.

This upgrade is split into two parts:

1. Upgrade the ‘citus’ extension

2. Upgrade PostgreSQL

The citus extension should be upgraded prior to upgrading PostgreSQL.

In the below instructions:

OLD-VERSION: Current version of PostgreSQL that is running
NEW-VERSION: Version being upgraded to
OLD-PORT: Port that PostgreSQL is currently running on (defaults to 5432)

Upgrade ‘citus’

Prepare for the ‘citus’ extension upgrade

1. Run the deploy_citusdb.yml playbook to ensure your system is up to date

commcare-cloud <env> ap deploy_citusdb.yml

Upgrade the ‘citus’ extension

1. Update public.yml

public.yml:

citus_version: <new citus version>

6.1. PostgreSQL 105

https://www.postgresql.org/docs/current/pgupgrade.html
http://docs.citusdata.com/en/v9.4/admin_guide/upgrading_citus.html

CommCareHQ Deployment

2. Run the deploy_citusdb.yml playbook

commcare-cloud <env> ansible-playbook deploy_citusdb.yml --tags citusdb -e postgresql_
→˓version=OLD-VERSION

3. Check the extension version

commcare-cloud <env> run-shell-command citusdb -b --become-user postgres "psql -d␣
→˓DATABASE -c '\dx' | grep citus"

Upgrade PostgreSQL

Prepare for the PostgreSQL upgrade

1. Update public.yml

public.yml:

citus_postgresql_version: NEW-VERSION
citus_postgresql_port: NEW-PORT # this must be different from the current port

2. Run the deploy_citusdb.yml playbook to install the new version of PostgreSQL

commcare-cloud <env> ansible-playbook deploy_citusdb.yml --tags citusdb

Perform the upgrade

1. Stop all processes connecting to the databases

commcare-cloud <env> run-module citusdb_master -b service "name=pgbouncer state=stopped"

2. Run the upgrade playbooks

The following commands can be used to perform the upgrade:

commcare-cloud <env> ansible-playbook pg_upgrade_start.yml --limit citusdb \
-e old_version=OLD-VERSION -e new_version=NEW-VERSION [-e old_port=OLD-PORT]

commcare-cloud <env> ansible-playbook pg_upgrade_standbys.yml --limit citusdb \
-e old_version=OLD-VERSION -e new_version=NEW-VERSION [-e old_port=OLD-PORT]

commcare-cloud <env> ansible-playbook pg_upgrade_finalize.yml --limit citusdb \
-e old_version=OLD-VERSION -e new_version=NEW-VERSION

Follow the instructions given in the play output.

106 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

3. Revert to using the old port

Once you are satisfied with the upgrade you can revert the port change in public.yml and apply the changes.

commcare-cloud <env> ansible-playbook deploy_citusdb.yml

6.1.8 Usage in CommCare

PostgreSQL is one of the primary databases that CommCare uses.

There are a few different categories of data that are stored in PostgreSQL:

• System level metadata:

– billing

– notifications

– etc

• Project level metadata:

– users

– locations

– etc

• Project generated data:

– forms

– cases

– ledgers

– message logs

– formplayer sessions

– syclogs

• Project reporting data

– custom report tables

– standard report tables

CommCare is configured to work with a number of databases:

• commcarehq

– the main ‘metadata’ database that stores users, locations etc.

• formplayer

– used only by formplayer to store user sessions etc.

• commcarehq_ucr

– custom report database

• commcarehq_synclogs

– data necessary for maintaining the state of the mobile devices

• commcarehq_proxy

6.1. PostgreSQL 107

CommCareHQ Deployment

– routing database for sharded databases

– this is only required for installations that require data sharding due to the scale

• commcarehq_p[N]

– database partition storing cases, forms, ledgers and messaging data

– there can be any number of these depending on the scale of the installation

For small scale installations many of these databases can be combined into a single database.

See CommCare HQ docs for more detailed information on different configurations that CommCare supports.

6.1.9 Configuration

The configuration of PostgreSQL is done via the Configurating postgresql.yml environment file.

Basic setup

• all databases hosted in a single PostgreSQL service

• relies on defaults for most of the databases

DEFAULT_POSTGRESQL_HOST: db1
dbs:
form_processing:
partitions:
p1:
shards: [0, 127]

p2:
shards: [128, 255]

p3:
shards: [256, 383]

p4:
shards: [384, 511]

p5:
shards: [512, 639]

p6:
shards: [640, 767]

p7:
shards: [768, 895]

p8:
shards: [896, 1023]

Separate database servers

• commcarehq, formplayer, commcarehq_ucr, commcarehq_synclogs hosted on db1

• form processing proxy DB (commcarehq_proxy) hosted on plproxy0

• form processing shard databases split between pgshard0 and pgshard1

108 Chapter 6. CommCare HQ Services Guides

https://commcare-hq.readthedocs.io/databases.html

CommCareHQ Deployment

dbs:
main:
host: db1

formplayer:
host: db1

ucr:
host: db1

synclogs:
host: db1

form_processing:
proxy:
host: plproxy0

partitions:
p1:
host: pgshard0
shards: [0, 127]

p2:
host: pgshard0
shards: [128, 255]

p3:
host: pgshard0
shards: [256, 383]

p4:
host: pgshard0
shards: [384, 511]

p5:
host: pgshard1
shards: [512, 639]

p6:
host: pgshard1
shards: [640, 767]

p7:
host: pgshard1
shards: [768, 895]

p8:
host: pgshard1
shards: [896, 1023]

6.2 BlobDB

6.2.1 Migrate from File System backend to an S3 compatible backend

This can be to Riak CS, Minio, S3 or any S3 compatible service.

6.2. BlobDB 109

CommCareHQ Deployment

Ensure that the S3 endpoint is up and accessible

If you are running the service locally make sure it is fully setup. If you are using S3 ensure that you have configured
the correct access to allow connections from the IPs where CommCare is running.

Send new writes to the S3 endpoint

1. Update settings in environments/<env>/public.yml:

• localsettings.BLOB_DB_MIGRATING_FROM_FS_TO_S3: True

• s3_blob_db_enabled: yes

• s3_blob_db_url: "<Endpoint URL e.g. https://s3.amazonaws.com>"

• s3_blob_db_s3_bucket: '<bucket name>'

2. Add/update settings in environments/<env>/vault.yml

• secrets.S3_ACCESS_KEY

• secrets.S3_SECRET_KEY

3. Deploy localsettings .. code-block:: bash

commcare-cloud <env> update-config

4. Restart CommCare services .. code-block:: bash

commcare-cloud <env> service commcare resetart

{% include_relative _blobdb_backfill.md %}

Flip to just the new backend

1. Make sure you’ve run the steps above to move all data to the new backend.

2. Update environments/<env>/public.yml

• Remove localsettings.BLOB_DB_MIGRATING_FROM_FS_TO_S3

3. Deploy localsettings with .. code-block:

cchq <env> update-config

4. Restart CommCare services .. code-block:: bash

commcare-cloud <env> service commcare resetart

6.2.2 Migrate from one S3 backend to another

This can be from one Riak CS cluster to another, or from a Riak CS cluster to Amazon S3, for example.

110 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

Send new writes to the new S3 endpoint

1. If the new endpoint is a riakcs cluster, add [riakcs_new] hosts (of new riak cluster) to inventory. (Otherwise
skip this step.)

2. Add localsettings.BLOB_DB_MIGRATING_FROM_S3_TO_S3: True in environments/<env>/public.
yml

3. Add/update settings in environments/<env>/vault.yml

• secrets.S3_ACCESS_KEY (new cluster)

• secrets.S3_SECRET_KEY (new cluster)

• secrets.OLD_S3_BLOB_DB_ACCESS_KEY (old cluster)

• secrets.OLD_S3_BLOB_DB_SECRET_KEY (old cluster)

4. If the new endpoint is a Riak CS cluster, deploy proxy. This will leave the proxy site for the old endpoint listing
to port 8080, and add a new one listening to 8081. (If migrating to Amazon S3, can skip.) .. code-block:: bash

commcare-cloud <env> ansible-playbook deploy_proxy.yml

5. Deploy localsettings .. code-block:: bash

commcare-cloud <env> update-config

During this deploy hosts with old localsettings will continue to talk to old riak cluster on port 8080.

{% include_relative _blobdb_backfill.md %}

Flip to just the new backend

1. Make sure you’ve run the steps above to move all data to the new backend.

2. Move [riakcs_new] hosts to [riakcs] (and delete old hosts) in inventory

3. Update environments/<env>/public.yml

• Remove localsettings.BLOB_DB_MIGRATING_FROM_S3_TO_S3: True

• Add localsettings.TEMP_RIAKCS_PROXY: True

4. Deploy proxy with .. code-block:

cchq <env> ansible-deploy deploy_proxy.yml --tags=nginx_sites

You should see both ports (8080 and 8081) now route to the new blobdb backend.

5. Deploy localsettings with .. code-block:

cchq <env> update-config

During this deploy hosts with old localsettings will continue to talk to new riak cluster on port 8081, and once
updated will talk to new riak cluster proxied on port 8080. There is a slight chance of MigratingBlobDB failover
from new to new, but this should be rare and benign.

6. Remove localsettings.TEMP_RIAKCS_PROXY: True from environments/<env>/public.yml

7. Deploy proxy again with .. code-block:

cchq <env> ansible-deploy deploy_proxy.yml --tags=nginx_sites

You should now see only 8080 route to the new blobdb backend, with the configuration for 8081 being removed.

6.2. BlobDB 111

CommCareHQ Deployment

6.2.3 Back-fill all existing data

After things are set up to read from the new backend and fall back to the old backend, you’ll need to run some commands
to migrate all existing data from the old backend to the new backend.

First, make sure that the directory you’ll use for logs exists:

cchq <env> run-shell-command django_manage 'mkdir /opt/data/blobdb-migration-logs; chown␣
→˓cchq:cchq /opt/data/blobdb-migration-logs' -b

Then run the migration in a tmux (or screen) with these good defaults options (you can tweak the options if you know
what you’re doing):

cchq <env> django-manage --tmux run_blob_migration migrate_backend --log-dir=/opt/data/
→˓blobdb-migration-logs --chunk-size=1000 --num-workers=15

At the end, you may get a message saying that some blobs are missing and a link to a log file that contains the info about
which ones. (If you don’t get this message, congratulations! You can skip this step.) Run the following command to
check all the blobs in the file to get more info about their status (the last arg is the log file that was printed out above):

cchq <env> django-manage --tmux check_blob_logs /opt/data/blobdb-migration-logs/migrate_
→˓backend-blob-migration-<timestamp>.txt

The output will look something like this:

tempfile: checked 2342 records
Found in new db: 0
Found in old db: 0
Not referenced: 0
Not found: 2342

XFormInstance: checked 42 records
Found in new db: 0
Found in old db: 0
Not referenced: 21
Not found: 21

Legend:

• Not referenced is OK. It means that the blob that was said to be “missing” isn’t in the blobdb but also isn’t
referenced by its parent object anymore (this is only meaningful if BlobMeta.parent_id is a couch identifier
that can be used to lookup the parent object), so it was likely deleted while the migration was running.

• Not found means that the missing blob is still referenced in blob metadata, but not found in either the old
backend or new backend.

• Found in (new|old) db means that actually it is present in one of the backends, unlike originally reported.
Re-run the check_blob_logs command with --migrate to migrate items “Found in old db”.

112 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

6.2.4 Usage in CommCare

The BlobDB refers to the internal service used by CommCare to store binary data or blobs. The interal API is abstracted
from the backend service allowing different backends to be used. Currently supported backends are:

• File system

– This backend is used for small CommCare deployments where all CommCare services can be run on a
single VM / server.

• S3 compatible service (S3, OpenStack Swift, Minio, Riak CS etc.)

– For larger deployments an Object Storage service is required to allow access to the data from different VMs.

The BlobDB is made up of 2 components:

• PostgreSQL metadata store

– This keeps track of the object key and it’s association to the relevant CommCare models.

• Key based storage service

– This the actual service where the data is stored. Data can be retrieved by using the object key.

Examples of data that is stored in the BlobDB:

• Form XML

• Form attachments e.g. images

• Application multimedia

• Data exports

• Temporary downloads / uploads

6.2.5 Migrating from one BlobDB backend to another

It is possible to migrate from one backend to another. The process is described in the following documents:

• Migrate from one S3 backend to another

• Migrate from File System backend to an S3 compatible backend

6.3 Nginx

6.3.1 SSL certificate setup for nginx

CommCare uses LetsEncrypt as the default certificate authority to generate SSL certificates for nginx.

commcare-cloud uses a combination of ansible and certbot to renew our Letsencrypt certificates. Ansible is used to
configure the Nginx and certbot. Afterwards Certbot is used for the certificate automation.

6.3. Nginx 113

https://en.wikipedia.org/wiki/Binary_large_object
https://letsencrypt.org/
https://certbot.eff.org/about/

CommCareHQ Deployment

Use of Ansible

• Installation and configuration of Certbot.

• Configure Nginx configuration files.

• Creation of directories used for http-01 challenge.

• Creating links to Certbot’s fullchain.pem and privkey.pem files

Use of Certbot

• Getting certificate for the first time.

• Renewal of certificate 1 month before the expiry.

• Moving symlinks to latest certificate and private key.

Monitoring

The expiry of certificates is monitored via external monitoring tools such as Datadog or Pingdom.

Procedure to configure SSL for a new environment

:raw-html-m2r:`<small>**Note from author**: I haven't tried this many times in a row and noted/fixed all the
kinks, so there may be something missing here, but those are the general steps at this point. It would be lovely
to make it so that it happened on the first setup, but we're not quite there yet. If there are any errors or gaps, a
github issue or pull requests would be much appreciated.</small>`

1. Set up site without HTTPS

In proxy.yml:

• fake_ssl_cert: yes

• letsencrypt_cchq_ssl: yes

• set nginx_combined_cert_value and nginx_key_value to null (or remove them)

and run full stack deploy

commcare-cloud <env> bootstrap-users
commcare-cloud <env> deploy-stack --skip-check -e 'CCHQ_IS_FRESH_INSTALL=1'
commcare-cloud <env> deploy commcare --set ignore_kafka_checkpoint_warning=true

Note: if you already have a running site with a previous cert, you can just skip this step.

114 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

2. Request a letsencrypt cert

Run the playbook to request a letsencrypt cert:

cchq <env> ansible-playbook letsencrypt_cert.yml --skip-check

3. Update settings to take advantage of new certs

In proxy.yml:

• set fake_ssl_cert to no

and deploy proxy again.

cchq <env> ansible-playbook deploy_proxy.yml

6.3.2 Migrating Nginx

1. Install and configure nginx on the new node

• Add the server in inventory and assign it the proxy group and cas_proxy(For ICDS)

• Run commcare-cloud <env> ap deploy_shared_dir.yml --tags=nfs
--limit=shared_dir_host

• Run commcare-cloud <env> ansible-playbook letsencrypt_cert.yml

• Run deploy-stack for the server.

• Do a deploy cchq <env> deploy

2. Ensure that any files being served directly by nginx are present and identical to the files on the current node

• Copy static content from live proxy /home/cchq/www/<env>/current/staticfiles to new server

• Copy any other static site content from the live proxy

• Setup SSL certificates

– Copy Letsencrypt Configuration dir from live proxy /etc/letsencrypt to new server

3. QA

• Do a test if it’s working by editing local /etc/hosts file.

4. Switch traffic to the new proxy.

5. Post steps

• Replace the old server with the new server in the staticfiles inventory group.

• Confirm that the SSL certificate can be renewed correctly by running certbot renew --dry-run

• Run a code deploy to ensure that the CommCare staticfile process is working correctly with the new proxy.

6.3. Nginx 115

CommCareHQ Deployment

6.3.3 Usage in CommCare

Nginx nginx [engine x] is an HTTP and reverse proxy server. It’s primary use in CommCare is as a reverse proxy and
load balancer however we also use it for serving static content, content caching and rate limiting.

6.4 Kafka

Table of Contents

• Kafka

– Resources

– Dependancies

– Setup

– Expanding the cluster

– Useful commands

– Upgrading Kafka

https://kafka.apache.org/: Kafka is used for building real-time data pipelines and streaming apps. It is horizontally
scalable, fault-tolerant and wicked fast. Kafka is used by CommCare to provide stream processing capabilities for data
changes. Changes to certain data models, such as cases and forms, are written to Kafka. Separate processes then read
the changes from Kafka and process (pillows) them into Elasticsearch or other secondary databases.

6.4.1 Resources

• Upgrade guide

• Command line tools

6.4.2 Dependancies

• Java

• Zookeeper

6.4.3 Setup

Kafka is installed on each host in the kafka inventory group and Zookeeper is installed on each host in the Zookeeper
inventory group.

116 Chapter 6. CommCare HQ Services Guides

https://nginx.org/en/docs/
https://kafka.apache.org/
https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools

CommCareHQ Deployment

6.4.4 Expanding the cluster

1. Add new host to the inventory and install Kafka

$ commcare-cloud <env> deploy-stack --limit=<new kafka host>

2. Update localsettings

$ commcare-cloud <env> update-config

3. Move partitions to new node

Follow the steps outlined below.

6.4.5 Useful commands

All of the command below assume they are being run from the /opt/kafka/bin/ path.

Show topic configuration

Note: Use below command when the kafka version is < 3.x. The --zookeeper argument is removed from 3.x.

$./kafka-topics.sh --describe --zookeeper=<zookeeper host>:2181 --topic
→˓<topic>

Note: Use below command when the kafka version is >= 3.x.

$./kafka-topics.sh --describe --bootstrap-server=<kafka host>:9092 --topic
→˓<topic>

Add new partitions to topic

N is the total number of partitions the topic should have

Note: Use below command when the kafka version is < 3.x. The --zookeeper argument is removed from 3.x.

$./kafka-topics.sh --alter --zookeeper=<zookeeper host>:2181 --topic <topci> -
→˓-partitions N

Note: Use below command when the kafka version is >= 3.x.

$./kafka-topics.sh --alter --bootstrap-server=<kafka host>:9092 --topic
→˓<topci> --partitions N

Note: Adding partitions to a topic should be done in conjunction with updating the CommCare Pillowtop process
configurations as described in the CommCare docs.

6.4. Kafka 117

https://commcare-hq.readthedocs.io/pillows.html#parallel-processors

CommCareHQ Deployment

Move partitions

NOTE: This can be done while all services are online

1. Create the list of topics to rebalance

$ cat topics.json
{
"topics": [{"topic": "case-sql"},{"topic": "form-sql"}],
"version": 1

}

2. Generate the reassignments

Note: Use below command when the kafka version is < 3.x. The --zookeeper argument is removed from 3.x.

$ /opt/kafka/bin/kafka-reassign-partitions.sh --zookeeper=localhost:2181 --
→˓broker-list "0,1,2" --topics-to-move-json-file topics.json --generate

Note: Use below command when the kafka version is >= 3.x.

$ /opt/kafka/bin/kafka-reassign-partitions.sh --bootstrap-
→˓server=localhost:9092 --broker-list "0,1,2" --topics-to-move-json-file␣
→˓topics.json --generate

Output:

1. Copy the proposed reassignment configuration to a JSON file and verify / update as required

replicas refers to the broker IDs that the partition should appear on. In the example below this will
put the ("case", 0) partition on broker 0 (with no replicas).

$ cat partitions-to-move.json
{
"version":1,
"partitions":[
{"topic":"case","partition":0,"replicas":[0]},
...

]
}

2. Reassign the partitions and verify the change:

Note: Use below command when the kafka version is < 3.x. The --zookeeper argument is removed from 3.x.

$./kafka-reassign-partitions.sh --zookeeper=localhost:2181 --reassignment-
→˓json-file partitions-to-move.json --execute

$./kafka-reassign-partitions.sh --zookeeper=localhost:2181 --reassignment-
→˓json-file partitions-to-move.json --verify

Note: Use below command when the kafka version is >= 3.x.

$./kafka-reassign-partitions.sh --bootstrap-server=localhost:9092 --
→˓reassignment-json-file partitions-to-move.json --execute

(continues on next page)

118 Chapter 6. CommCare HQ Services Guides

CommCareHQ Deployment

(continued from previous page)

$./kafka-reassign-partitions.sh --bootstrap-server=localhost:9092 --
→˓reassignment-json-file partitions-to-move.json --verify

See https://kafka.apache.org/documentation.html#basic_ops_cluster_expansion for more details.

Replication

For setting up the replication on existing topic we make use of a helper script which has the following capabilities:

• increase replication for existing topics

• decrease replication factor for existing topics

• remove all replicas from a particular broker so it can be decomissioned

• balance leaders

For details on how to use this tool please see kafka-reassign-tool

6.4.6 Upgrading Kafka

KAFKA-VERSION: Version of Kafka being upgraded to
KAFKA-SCALA-VERSION: Version required by KAFKA-VERSION (Can be found `here
→˓<https://kafka.apache.org/downloads>`_) .
KAFKA_INTER_BROKER_PROTOCOL_VERSION: Maps to Kafka's inter.broker.protocol.
→˓version. If you have a cluster that runs brokers with different Kafka␣
→˓versions make sure they communicate with the same protocol version.
KAFKA_LOG_MESSAGE_FORMAT_VERSION: Maps to Kafka's log.message.format.version.␣
→˓Specifies the protocol version with which your cluster communicates with its␣
→˓consumers.

Refer to Kafka Upgrade documentation for more details.

1. Ensure that the Kafka config is up to date

$ cchq <env> ap deploy_kafka.yml

2. Update the Kafka version number and Scala version in public.yml. For right Scala version please refer the
Kafka documentation <https://kafka.apache.org/downloads>.

environments/`<env>`/public.yml

kafka_version: <KAFKA-VERSION>
kafka_scala_version: <KAFKA-SCALA-VERSION>

3. Upgrade the Kafka binaries and config

$ cchq <env> ap deploy_kafka.yml

4. Upgrade the brokers one at a time Once you have done so, the brokers will be running the latest version and you
can verify that the cluster’s behavior and performance meets expectations. It is still possible to downgrade at this
point if there are any problems.

5. Update Kafka config:

6.4. Kafka 119

https://kafka.apache.org/documentation.html#basic_ops_cluster_expansion
https://github.com/dimas/kafka-reassign-tool
https://kafka.apache.org/documentation/#upgrade

CommCareHQ Deployment

environments/`<env>`/public.yml

kafka_inter_broker_protocol_version: <KAFKA_INTER_BROKER_PROTOCOL_VERSION>

$ cchq <env> ap deploy_kafka.yml

6. Update Kafka config (again):

environments/`<env>`/public.yml

kafka_log_message_format_version: <KAFKA_LOG_MESSAGE_FORMAT_VERSION>

$ cchq <env> ap deploy_kafka.yml

6.5 Pillowtop

Table of Contents

• Pillowtop

– Usage in CommCare

– Splitting a pillow

Pillowtop is an internal framework built in CommCare which is used for asynchronous stream processing of data.

A pillow is a class build in the pillowtop framework. A pillow is a subscriber to a change feed. When a change
is published the pillow receives the document, performs some calculation or transform, and publishes it to another
database.

In general a change feed refers to a Kakfa topic or topics but could also be a CouchDB change feed.

More information on the architecture and code structure are available in the CommCare documentation:

• Change Feeds

• Pillows

6.5.1 Usage in CommCare

CommCare uses pillows to populate its secondary databases. These databases are used for reporting and also back
some of the CommCare features like APIs.

These databases are:

• Elasticsearch

• SQL custom reporting tables

120 Chapter 6. CommCare HQ Services Guides

https://commcare-hq.readthedocs.io/change_feeds.html
https://commcare-hq.readthedocs.io/pillows.html

CommCareHQ Deployment

6.5.2 Splitting a pillow

In some cases a pillow may contain multiple processors. It is sometimes desirable to split up the processors into
individual OS processes. The most compelling reason to do this is if one of the processors is much slower than the
others. In this case having the slow processor separated allows the other’s to process at a faster pace. It may also be
possible to deploy additional processing capacity for the slow one.

The the following steps we will be splitting the FormSubmissionMetadataTrackerProcessor out from the
xform-pillow.

The xform-pillow has multiple processors as can be seen from the CommCare docs. The
FormSubmissionMetadataTrackerProcessor can be disabled by setting RUN_FORM_META_PILLOW to False in
the Django settings file. We can also see that the FormSubmissionMetadataTrackerProcessor is used by the
FormSubmissionMetadataTrackerPillow.

So in order to split the FormSubmissionMetadataTrackerProcessor into its own pillow process we need to do the
following:

1. Update the environment configuration

• Add the new pillow to <env>/app-processes.yml

pillows:
'pillow_host_name':
FormSubmissionMetadataTrackerPillow:
num_processes: 3

• Update the RUN_FORM_META_PILLOW to disable the processor in the current pillow:

localsettings:
RUN_FORM_META_PILLOW: False

2. Stop the current pillow

cchq <env> service pillowtop stop --only xform-pillow

3. Create new checkpoints for the new pillow

cchq <env> django-manage --tmux split_pillow_checkpoints xform-pillow␣
→˓FormSubmissionMetadataTrackerPillow

Note: --tmux is necessary to allocate a terminal for the command which allows you to respond to any confirma-
tion prompts.

4. Deploy the new pillow

cchq <env> update-supervisor-confs

5. Ensure all the pillows are started

cchq <env> service pillowtop start

6.5. Pillowtop 121

https://commcare-hq.readthedocs.io/pillows.html#corehq.pillows.xform.get_xform_pillow

CommCareHQ Deployment

6.6 RabbitMQ

6.6.1 Usage in CommCare

RabbitMQ is a message broker which supports publish/subscribe workflows. RabbitMQ groups exchanges, queues,
and permissions into virtual hosts. For our setup in production, the virtual host is always “commcarehq”. Locally you
might be using the default virtual host of “/”.

6.6.2 Guides

• services/rabbitmq/upgrade:Upgrading RabbitMQ

6.7 Redis

6.7.1 Usage in CommCare

Redis is an open source, in-memory data structure store. CommCare uses Redis for caching and locking.

6.7.2 Guides

• services/redis/redis_cluster:Redis Cluster

6.7.3 Tools

• Redis Traffic Stats

6.7.4 Configuration recommendations

Disk

You should allocate at least 3x as much disk for redis data as the redis maxmemory setting.

If you define a redis_maxmemory variable in your environment’s public.yml then that will be the value. Otherwise it
will be half of the total memory of the machine.

So for example if redis_maxmemory is not set and you’re running redis on an 8GB machine, then redis’s maxmemory
setting will be 4GB and you should allocate at least 4GB x 3 = 12GB of disk for redis data (in addition to whatever other
disk space needed for the OS, logs, etc.). This will allow enough room for redis’s AOF (data persistence file), whose
rewrite process makes it oscillate between at most maxmemory and at most 3 x maxmemory in a saw-tooth fashion.

122 Chapter 6. CommCare HQ Services Guides

https://www.rabbitmq.com/
https://redis.io/
https://github.com/hirose31/redis-traffic-stats

CommCareHQ Deployment

6.8 Set up Bitly for generating app codes

To enable generating app shortcodes to install builds on CommCare mobile, you will need a Bitly API key.

You should add these in the ansible vault file as follows:

vault.yml

localsettings_private:
BITLY_OAUTH_TOKEN: ''

6.9 Keepalived

Keepalived is used for IP failover between two servers. It adds facilities for load balancing and high-availability to
Linux-based infrastructures. Keepalived works on VRRP (Virtual Router Redundancy Protocol) protocol to make IPs
highly available .

The VRRP protocol ensures that one of participating nodes is master. The backup node(s) listens for multicast packets
from a node with a higher priority. If the backup node fails to receive VRRP advertisements for a period longer than
three times of the advertisement timer, the backup node takes the master state and assigns the configured IP(s) to itself.
In case there are more than one backup nodes with the same priority, the one with the highest IP wins the election.

Note: No fencing mechanism is available in Keepalived. If two participating nodes don’t see each other,both will have
the master state and both will carry the same IP(s). In our Current infrastructure we are using it for couchdb proxy
failover in ICDS environment. We have plans to implement it more places where we have proxies setup.

6.9.1 Operational Notes:-

1. check keepalived status

$ systemctl status keepalived

2. know which one is the master
Check the status/logs and you’ll see the log lines like this

Sep 12 03:25:36 MUMGCCWCDPRDCDV09 Keepalived_vrrp[30570]: VRRP_Instance(VI_1)
Entering BACKUP STATE Check the virtual IP listed in /etc/keepalived/keepalived.conf, verify
if this IP address is assigned to the interface of the server.

3. where are the logs

Keepalived logs to journald

$ journalctl -u keepalived

4. if we restart haproxy will that trigger a failover? (only on master node)

vrrp_script chk_service {
script "pgrep haproxy"
interval 2

}

From the config above it check for running process in every two second interval.if restart took longer than this, it will
trigger failover

6.8. Set up Bitly for generating app codes 123

https://app.bitly.com/settings/api/
https://www.keepalived.org/doc/index.html

CommCareHQ Deployment

1. what’s the process for taking haproxy offline e.g. during maintenance

• If we are performing Maintenance on Backup Node

– No Action

• If we are performing Maintenance on Master Node

– Stop haproxy and verify if Backup node is transitioned to master state from logs of Backup node (This
is optional for just to be safe otherwise it should transition automatic once the haproxy stops on master
node)

• If we are Performing on both nodes at the same time.

– Not much anyone can do

Note:- All the nodes will go back to their desired state once the maintenance is over.

124 Chapter 6. CommCare HQ Services Guides

CHAPTER

SEVEN

BACKUPS AND DISASTER RECOVERY

This section describes how to configure backups and restore method for each database service used by CommCare HQ
instance.

7.1 Backup and Restore

Table of Contents

• Backup and Restore

– Warning

– Backup to Amazon S3 or a compatible service

– PostgreSQL Backups

– CouchDB backups

– BlobDB Backups

– Elasticsearch Snapshots

This page describes some of the backup options that can be accessed through CommCare cloud.

7.1.1 Warning

You should read this section carefully and understand what each of these settings does. Backups are system dependent,
and you should convince yourself that they are working correctly and that you are properly able to restore from them
before something bad happens.

Each primary data-store that CommCare HQ uses can have backups turned on or off based settings in public.yml or the
vault file. All settings mentioned below are to be placed in public.yml unless otherwise specified.

After making changes to these settings you will need to run:

$ commcare-cloud <env> deploy-stack --tags=backups

125

CommCareHQ Deployment

7.1.2 Backup to Amazon S3 or a compatible service

commcare-cloud has the ability to upload all backups automatically for storage on Amazon S3 or an S3-compatible
alternative. Each service’s backup has a specific setting that needs to be enabled for this to happen, as detailed below.

S3 credentials

In order to use this service, you will need to add your S3 credentials to the localsettings_private section of your
vault file:

• AMAZON_S3_ACCESS_KEY: Your aws access key id

• AMAZON_S3_SECRET_KEY: Your aws secret access key

Even though these settings have the word AMAZON in them, you should use use the credentials of your S3-compatible
hosting provider.

Endpoints

We use boto3 to upload data to Amazon S3 or a compatible service.

• aws_endpoint: The endpoint to use. Add this setting if you are using an S3-compatible service that isn’t AWS.

• aws_region: The Amazon AWS region to send data to. (Amazon S3 only - this changes the default aws-endpoint
to the region-specific endpoint).

• aws_versioning_enabled: (true or false) Set this to true if the AWS endpoint you are using automatically
stores old versions of the same file (Amazon S3 does this). If this is set to false, files will be uploaded to your
S3-compatible bucket with a date and timestamp in the filename, creating a new file each time. (Default: true)

Receiving email alerts if check fails

There is a script that can run to check for the presence of recent backups uploaded to S3, and it currently supports
blobdb, couch, and postgres. To enable it, configure the following variable in public.yml:

check_s3_backups_email: backup-alerts@example.com

It’s your responsibility to test that you receive these emails when recent backups are missing in S3 and that the emails
don’t go to you spam folder before treating the absence of alerts as a positive signal. In addition to sending an email
when there’s an error, it will place a file called s3_backup_status.txt inside the backup dir for each service. You
can check for the presence of that file and its last modified date when looking for evidence that the backup check is
running correctly.

7.1.3 PostgreSQL Backups

PostgreSQL backups are made daily and weekly by default and can be made hourly optionally. Old backups are deleted
from the local system.

• postgresql_backup_dir: The directory to write the PostgreSQL backups to. (Default: /opt/data/backups/
postgresql)

• The backup_postgres setting has a few options. You should understand the tradeoffs of each of these settings
and know how to restore from the resulting backup files.

– plain - uses the pg_basebackup command to write a backup to the postgresql_backup_dir.

126 Chapter 7. Backups and Disaster Recovery

https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/ansible/README.md#managing-secrets-with-vault
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html?id=docs_gateway
https://www.postgresql.org/docs/9.6/app-pgbasebackup.html

CommCareHQ Deployment

– dump - uses the pg_dumpall command to write a dump of the database to the postgresql_backup_dir.

• postgresql_backup_days: The number of days to keep daily backups (Default: 1)

• postgresql_backup_weeks: The number of weeks to keep weekly backups (Default: 1)

• postgres_backup_hourly: Boolean value to enable or disable hourly backups. (Default: false)

• postgresql_backup_hours: The number of hours to keep hourly backups (Default: 1).

Enabling S3 backups for PostgreSQL

After adding your credentials to the vault file, set:

• postgres_s3: True

• postgres_snapshot_bucket: The name of the S3 bucket to save postgres backups to (Default:
dimagi-<env>-postgres-backups).

Restoring PostgreSQL Backups

You should first stop all CommCare HQ services:

$ commcare-cloud <env> downtime start
$ commcare-cloud <env> service postgresql stop

Restoring from backup depends on the type of backup made.

plain (pg_basebackup) without S3

If you are using a pg_basebackup, you should follow these instructions. The latest daily backup should be in the
directory specified in postgresql_backup_dir, above.

For example, you can follow a process similar to this one:

• You will need to run commands as the postgres user:

$ su - ansible
enter ansible user password from vault file
$ sudo -u postgres bash
enter ansible user password again. You will now be acting as the postgres user

• Find the list of current backups and choose the one you want to restore from, for e.g.:

$ ls -la /opt/data/backups/postgresql # or whatever your postgres backup directory␣
→˓is set to
total 3246728
drwxr-xr-x 2 postgres postgres 4096 Jul 8 00:03 .
drwxr-xr-x 5 root root 4096 Feb 6 2018 ..
-rw-rw-r-- 1 postgres postgres 678073716 Jul 6 00:03 postgres_<env>_daily_2019_07_
→˓06.gz
-rw-rw-r-- 1 postgres postgres 624431164 Jun 23 00:03 postgres_<env>_weekly_2019_06_
→˓23.gz

• Uncompress the one you want:

7.1. Backup and Restore 127

https://www.postgresql.org/docs/9.6/app-pg-dumpall.html
https://www.postgresql.org/docs/9.6/continuous-archiving.html#BACKUP-PITR-RECOVERY

CommCareHQ Deployment

$ tar -xjf /opt/data/backups/postgresql/postgres_<env>_daily_2019_07_06.gz -C /opt/
→˓data/backups/postgresql

• [Optional] Make a copy of the current data directory, for eg:

$ tar -czvf /opt/data/backups/postgresql/postgres_data_before_restore.tar.gz /opt/
→˓data/postgresql/9.6/main

• Copy backup data to the postgres data directory. This will overwrite all the data in this directory.

$ rsync -avz --delete /opt/data/backups/postgresql/postgres_<env>_daily_2019_07_06 /
→˓opt/data/postgresql/9.6/main

• Restart Postgres and services, from the control machine, e.g.:

$ commcare-cloud <env> service postgresql start

plain (pg_basebackup) with S3

If you have S3 backups enabled there is a restore script that was installed when the system was installed.

On the PostgreSQL machine:

• Become the root user

$ su - ansible
enter ansible user password from vault file
$ sudo -u root bash
enter ansible user password again. You will now be acting as the root user

• Run the restore script after finding the backup you want to restore from S3

$ restore_from_backup <name of backup file>

Note: this script will not make a copy of the current data directory and should be used with caution. You should know
and understand what this script does before running it.

dump (pg_dumpall)

You can follow these instructions to restore from a dump. You will need to have a new database set up with a root user
as described in the instructions.

• Ensure the file you are restoring from is readable by the postgres user. By default, commcare-cloud will make
backups into /opt/data/backups/postgresql/ as .gz zipped archives. Choose one of these files as the
source of your backup.

• Become the postgres user

$ su - ansible
enter ansible user password from vault file
$ sudo -u postgres bash
enter ansible user password again. You will now be acting as the postgres user

128 Chapter 7. Backups and Disaster Recovery

https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/ansible/roles/pg_backup/templates/plain/restore_from_backup.sh.j2
https://www.postgresql.org/docs/9.6/backup-dump.html#BACKUP-DUMP-ALL

CommCareHQ Deployment

• Extract the backup and pipe it to the psql command to restore the data contained in the backup. The name of
the default postgres database is commcarehq:

$ gunzip -c <path to backup file> | psql commcarehq

7.1.4 CouchDB backups

CouchDB backups are made daily and weekly and optionally hourly. Old backups are deleted from the system.

• backup_couch: True to enable couchdb backups (Default: False)

• couch_s3: True to enable sending couchdb backups to your S3 provider (Default: False)

• couch_backup_dir: the directory to save backups in (Default: /opt/data/backups/couchdb2)

• couchdb_backup_days: The number of days to keep daily backups (Default: 1)

• couchdb_backup_weeks: The number of weeks to keep weekly backups (Default: 1)

• couch_backup_hourly: Boolean value to enable or disable hourly backups. (Default: false)

• couchdb_backup_hours: The number of hours to keep hourly backups (Default: 1).

CouchDB backups create a compressed version of the couchdb data directory.

Restoring CouchDB backups (on a single node cluster)

Make sure that you are starting with a fresh install of couchdb.

• First, become the couchdb user: .. code-block:: bash

$ su - ansible # enter ansible user password from vault file $ sudo -u couchdb bash # enter ansible
user password again. You will now be acting as the couchdb user

• [Optional] Copy the contents of the current couchdb directory in case anything goes wrong. From the couchdb
machine:

$ tar -czvf /opt/data/backups/couchdb2/couchdb_data_before_restore.tar.gz -C /opt/
→˓data/couchdb2/ .

• Locate the compressed backup file that you want to restore. If this is stored somewhere remotely, you should put
it on this machine in a place accessible to the couchdb user. By default, couchdb backups live in /opt/data/
backups/couchdb2.

• Run the restore script:

$ restore_couchdb_backup.sh <path to backup>

This script will extract the backup file to the default couchdb backup location,␣
→˓copy this data to the couchdb data directory, the updates the couchdb shards with␣
→˓the current machine's IP addresses.

During this process you will be asked for the ansible user's password in order to␣
→˓stop and start the couchdb service.

Note\ : This backup script will only work for a single-node cluster.

• As your regular user, ensure the couchdb service is now running:

7.1. Backup and Restore 129

CommCareHQ Deployment

$ commcare-cloud <env> django-manage check_services

7.1.5 BlobDB Backups

The blobdb is our binary data store.

• backup_blobdb: True: to enable blobdb backups

• blobdb_s3: True: to enable sending blobdb backups to S3

• blobdb_backup_dir: the directory to write blobdb backups to (Default: /opt/data/backups/blobdb)

• blobdb_backup_days: the number of days to keep daily backups (Default: 2)

• blobdb_backup_weeks: the number of weeks to keep weekly backups (Default: 2)

• blobdb_backup_hourly: Boolean value to enable or disable hourly backups. (Default: false)

• blobdb_backup_hours: The number of hours to keep hourly backups (Default: 1).

BlobDB backups create a compressed version of the blobdb data directory.

Restoring BlobDB Backups

The BlobDB restore process depends on what BlobDB system you’re using.

• If you’re using the default file system BlobDB, the restore process is the same as the couchdb restore process in
that it involves extracting the backed up data to the data directory.

• If you’re using some other (distributed) system you should follow that service’s provided instructions on restora-
tion.

The file system BlobDB restore process will be explained below.

• Become the cchq user

$ sudo -iu cchq

• Now we need to extract the backup data. The BlobDB backups live in the /opt/data/backups/blobdb directory by
default (if you have specified a different path in the public.yml file, it will be there instead).

$ tar -xf /opt/data/backups/blobdb/blobdb_<version>.gz -C /opt/data/backups/blobdb

• Move the data to the /opt/data/blobdb/ directory.

$ rsync -avz --delete /opt/data/backups/blobdb/blobdb_<version> /opt/data/blobdb/

7.1.6 Elasticsearch Snapshots

While it is possible to backup Elasticsearch data, it isn’t always necessary as this is not a primary data store and can
be rebuilt from primary sources. If Elasticsearch data is lost or deleted in entirety, it will be recreated when Deploying
CommCare HQ code changes.

However, you may still back-up Elasticsearch using Elasticsearch Snapshots directly to S3 or locally. The rest of this
section assumes an understanding of that documentation page.

• backup_es_s3: True: to create snapshots and send them directly to S3 (not stored locally)

130 Chapter 7. Backups and Disaster Recovery

https://www.elastic.co/guide/en/elasticsearch/reference/1.7/modules-snapshots.html#_snapshot

CommCareHQ Deployment

• es_local_repo: True: to save snapshots locally (not sent to S3)

• es_repository_name: the name to give to the snapshot respository

Both of those settings are mutually exclusive. There is currently no way to create snapshots to be saved locally and
sent to S3 at the same time.

Restoring Elasticsearch Snapshots

You can restore snapshots by following the instructions given by Elasticsearch

7.2 ElasticSearch Backup on Swift API

We normally do the backup of ElasticSearch using ElasticSearch backup plugin which allows us to take backup on
external seervices compatible with S3. In Few cases where S3 is not availble we can sort to other solutions. This
documentaion details the same process for backing up on Swift API of OpenStack Plugin used : https://github.com/
BigDataBoutique/elasticsearch-repository-swift

7.2.1 Configuring and Testing.

To install the plugin on the ansible server.

• install the plugin using elasticsearch plugin binary. ```bash

/opt/elasticsearch-1.7.6/bin/plugin install org.wikimedia.elasticsearch.swift/swift-repository-plugin/1.7.0```

* To create a Repo for the sanpshot
```bash

curl -XPUT 'http://<ip-address>:9200/_snapshot/<env>_es_snapshot' -d '{
> "type": "swift",
> "settings": {
> "swift_url": "https://<aurl-address>/auth/v1.0/",
> "swift_container": "nameofthecontainer",
> "swift_username": "XXXXXX",
> "swift_password": "XXXXX",
> "swift_authmethod": ""
> }
> }'
{"acknowledged":true}

• To take a snapshot ```bash

curl -X PUT “localhost:9200/_snapshot/:raw-html-m2r:`<env>`_es_snapshot/snapshot_1?wait_for_completion=true”

* To Verify the snapshot.
```bash

curl -X GET "<ip-address>:9200/_snapshot/<env>_es_snapshot/_all"

• To restore a snapshot of date say 2018/10/05. ```bash

curl -X POST “:raw-html-m2r:`<ip-address>`:9200/_snapshot/:raw-html-m2r:`<env>`_es_snapshot/:raw-html-
m2r:`<env>`_es_snapshot_2018_10_5/_restore”

7.2. ElasticSearch Backup on Swift API 131

https://www.elastic.co/guide/en/elasticsearch/reference/1.7/modules-snapshots.html#_restore
https://github.com/BigDataBoutique/elasticsearch-repository-swift
https://github.com/BigDataBoutique/elasticsearch-repository-swift

CommCareHQ Deployment

Configuring in Ansible
Once you can check that above process is working fine you can proceed with configuring␣
→˓the same in Ansible.

Add the following entries in `public.yml` of the environemtn you want to configure.
```bash
# ElasticSearch Backup on Swift API
backup_es_swift: True
swift_container: "nameofthecontainer"
swift_url: https://<aurl-address>/auth/v1.0/

Add the follwing line in vault.yml

secrets
swift_username: "XXXXXXXXXXX"
swift_password: "YYYYYYYYYYY"

Deploy elasticsearch

cchq <env> anisble-playbook deploy_db.yml --limit=elasticsearch

What Does Ansible do.

• Install the Plugin

• Restart ElasticSearch

• Create a snapshot repo

• Copy script to take snapshot

• Create a Cronjob

7.3 Disaster Recovery

Table of Contents

• Disaster Recovery

– Overview

– Setting up a secondary environment

– Remote Backups

– Database Replication

– Example models

132 Chapter 7. Backups and Disaster Recovery



CommCareHQ Deployment

7.3.1 Overview

Disaster Recovery refers to the process of restoring the IT services following an event of outage of IT infrastructure
due to a natural or human induced disaster to allow business continuity. This public article from IBM is useful to
understand what Disaster Recovery is in general.

A Disaster Recovery solution at a minimum involves

• Establishing Recovery Time and Recovery Point Objectives that meet project requirements.

• Setting up and monitoring remote data backups or replication.

• Creating an active or passive secondary site and the necessary automation to failover and restore to this site
rapidly.

Since CommCare Mobile works offline, a disaster at primary infrastructure may not cause an immediate disruption
to mobile worker operations. But it definitely impacts all web operations (for e.g. actions based on reports, SMS
reminders and integrations) and will soon clog mobile worker operations as well.

In this regard, to ensure continuity of a CommCare deployment following an event of outage, you must have a com-
prehensive Disaster Recovery Solution. The purpose of this document is not to present any single Disaster Recovery
solution, but rather to present the possibilities and components that commcare-cloud provides to enable a Disaster Re-
covery. The specific solution may vary depending on business needs, IT capacity and DR budget and we recommend
you to design a DR solution that meets all of your requirements upfront as part of initial CommCare deployment.

7.3.2 Setting up a secondary environment

To set up a secondary environment, copy the existing environment config directory to another directory and use it to
install CommCare HQ.

If you plan to have a secondary environment identical to primary environment the only file you will need to update is
the inventory file with IP addresses from secondary environment.

If not, you can create another environment directory with updated configuration based on the primary config directory.

7.3.3 Remote Backups

The commcare-cloud backup tool provides everything to enable remote backups. It takes daily and weekly backups by
default and can be configured to take hourly backups. The tool can send backups to a remote S3 compatible service if
configured. The documenation on Backup and Restore has the relevant details on how to set up remote backups and
restore from backups.

While the remote backups are the minimum requirement to safeguard the data in the event of a disaster it is not enough
for a rapid recovery of the CommCare services. Even though, commcare-cloud is able to provide hourly backups it
will not be enough to achieve one hour RPO since it is not possible to set up a CommCare environment rapidly in an
hour at a secondary site. To enable rapid recovery you must have a secondary environment on standby, set up database
replication and a failproof recovery plan and scripts.

7.3. Disaster Recovery 133

https://www.ibm.com/in-en/topics/backup-disaster-recovery


CommCareHQ Deployment

7.3.4 Database Replication

Continous Database replication is necessary to enable minimal RPO. While commcare-cloud does not have tooling
available to set up continous replication all the databases used in CommCareHQ support replication through various
means. To set this up, you should consult database specific documentation and set this up yourself.

Primary Databases

• Postgresql https://www.postgresql.org/docs/current/runtime-config-replication.html

• BlobDB If you are using MinIO https://min.io/product/active-data-replication-for-object-storage

• CouchDB https://docs.couchdb.org/en/stable/replication/intro.html

Secondary Databases

• Elasticsearch https://www.elastic.co/guide/en/cloud-enterprise/2.4/ece-snapshots.html#
ece-restore-across-clusters

7.3.5 Example models

Below are some example models for DR.

• Remote backups on secondary environment: You can set up a CommCare HQ environment on secondary infras-
tructure, keep it up to date with remote backups and keep restore scripts ready.

• Secondary environment with contious data replication: You can setup a fully functioning secondary environment
with databases being replicated continously.

• Remote backups on secondary infrastructure (Not a DR): In this all you need is a secondary infrastructure to fall
back to and backups being continously sent to this site.

134 Chapter 7. Backups and Disaster Recovery

https://www.postgresql.org/docs/current/runtime-config-replication.html
https://min.io/product/active-data-replication-for-object-storage
https://docs.couchdb.org/en/stable/replication/intro.html
https://www.elastic.co/guide/en/cloud-enterprise/2.4/ece-snapshots.html#ece-restore-across-clusters
https://www.elastic.co/guide/en/cloud-enterprise/2.4/ece-snapshots.html#ece-restore-across-clusters


CHAPTER

EIGHT

SECURING COMMCARE HQ

Security is one of the most important things when dealing with web applications. This guide gives high level overview
of security considerations to protect the data that is collected using a CommCare HQ instance. Note that this just gives
hints in the direction of the security and is in no way exhaustive.

8.1 Introduction

A web application exposed to public internet has many levels where an attack is possible such as application, host
operating system, network and even physical levels. In a cloud environment, the cloud service provider handles the
security up to operating system. But when hosting on premises all of this responsibility falls upon the team hosting the
application.

It is very important to design an end-to-end hosting architecture and processes to maximize security at all levels. In
addition, there might be government regulations and legal requirements to be met when hosting locally that the local
hosting team may need to be aware of.

Below are few security focused architecture from the industry as a reference to understand the number of considerations
when designing a secure hosting environment.

1. https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise/design-zone-security/
safe-secure-dc-architecture-guide.pdf

2. https://www.oracle.com/a/ocom/docs/oracle-cloud-infrastructure-security-architecture.pdf

3. https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-123.pdf

Below we provide few of such considerations that we recommend at a minimum.

Note: CommCare and its server platform CommCare HQ are Open Source software, primarily developed by Dimagi.
These are made available to the community under the terms of its Open Source licensing without warranty.

We regularly undertake security efforts like penetration testing, audits of the software code, and reviews to ensure that
the system functionality is sufficient to meet compliance commitments that we make to our commercial customers in
providing our SaaS service. We believe that these demonstrate that CommCare can meet very high standards of scrutiny
when deployed appropriately.

To best support our community of practice, below we provide security best practices which are common to the security
needs of our partners. These materials are provided for reference without warranty for their accuracy or sufficiency to
meet a particular standard of security, and do not constitute any commitment from the authors or owners of the code.

135

https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise/design-zone-security/safe-secure-dc-architecture-guide.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise/design-zone-security/safe-secure-dc-architecture-guide.pdf
https://www.oracle.com/a/ocom/docs/oracle-cloud-infrastructure-security-architecture.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-123.pdf


CommCareHQ Deployment

8.2 Application Security

Application refers to all the services that are accessible for users mostly through HTTP. In the context of CommCare
HQ, it’s the CommCare HQ website that is being hosted and any other services that have HTTP endpoints such as
Elasticsearch and Celery Flower. Here are few things that must be taken care of to ensure safety of the application
services.

1. Access Management
• CommCare HQ has finegrained roles and permissions based access management. When registering users

make sure they have appropriate roles and permissions.

• For users with administrative privileges make sure they set up and use Two Factor Authentication.

2. Refer to Privacy and Security section in Project Space Settings and configure as necessary.

3. Be up to date with changes and security updates for CommCare HQ and commcare-cloud by following Expec-
tations for Ongoing Maintenance.

4. Make sure to configure SSL certificate using docs at SSL certificate setup for nginx.

8.3 Host and Disk Security

1. Access management Make sure that access to virtual machines is done using SSH keys and not passwords.
Refer to User Access Management to know how this is done using commcare-cloud. Implement any other best
practices such as enabling access through VPN and logging SSH access etc as necessary.

2. Data Encrypttion When CommCare HQ is deployed with commcare-cloud all the drives that store user data are
automatically encrypted. If the data is stored anywhere else, it must be made sure that the data is stored only in
encrypted drives.

3. Secrets All the passwords are stored in the ansible encrypted vault file. Never expose these passwords and store
and share the password for the vault file securely.

4. It’s recommended to take support contracts for Ubuntu and any other virtualization software.

5. Make sure that there is a process in place to get alerts on security patches for the operating system and other
important libraries.

8.4 Network and Physical Security

1. Use VPN to access virtual machines when outside the LAN.

2. Make sure to implement necessary firewall rules to enable restricted access to the virtual machines.

3. If the hosting hardware is shared with other applications alongside CommCare HQ, additional network function-
alities may need to implemented to ensure security isolation of the applications.

4. Implement necessary protocols to secure access to the physical servers at the data center or server room.

136 Chapter 8. Securing CommCare HQ

https://confluence.dimagi.com/display/commcarepublic/Roles+and+Permissions
https://confluence.dimagi.com/display/commcarepublic/Setting+up+Two-Factor+Authentication
https://confluence.dimagi.com/display/commcarepublic/Project+Space+Settings


CHAPTER

NINE

REFERENCE ANNEXURE

This section contains reference sections for various topics related to hosting a CommCare HQ instance.

9.1 CommCare Cloud Reference

commcare-cloud is a python based tool used to automate deployment of CommCare HQ on a given set of servers. For
more information on what commcare-cloud is please see CommCare Cloud Deployment Tool.

9.1.1 Installation

commcare-cloud can be installed on a local machine or on a remote control machine that’s part of the CommCare HQ
environment. We recommend installing on a control machine.

Installation using a script

Step 1.

Make sure that you have a non-root user account on the control machine.

Let’s say the user is named admin and the machine is named control.example.com. Start by logging in as your user
via SSH:

(laptop)$ ssh admin@control.example.com

(Did that work? Only type the text starting after the $ in these examples.)

You should see a prompt like

admin@control.example.com:~$

Run this command to verify that you are in the home directory of the admin user.

admin@control.example.com:~$ pwd
/home/admin

137



CommCareHQ Deployment

Step 2.

Pull commcare-cloud source code.

admin@control.example.com:~$ git clone https://github.com/dimagi/commcare-cloud.git

Verify that created a directory called commcare-cloud:

admin@control.example.com:~$ ls commcare-cloud/
commcare-cloud-bootstrap environments MANIFEST.in setup.py
control fabfile.py provisioning src
dev_requirements.txt git-hooks README.md tests
docs Makefile scripts Vagrantfile

If you see something like

ls: cannot access commcare-cloud: No such file or directory

then the git clone command did not run correctly. Make sure you have git installed and run it again with --verbose
to give more logging output.

If you see

fatal: destination path 'commcare-cloud' already exists and is not an empty directory.

Run the following commands to update the existing commcare-cloud repository

admin@control.example.com:~$ cd commcare-cloud
admin@control.example.com:~$ git checkout master
admin@control.example.com:~$ git pull
admin@control.example.com:~$ cd ..

Step 3.

Run the install script.

admin@control.example.com:~$ source commcare-cloud/control/init.sh

and when you see it ask you this:

Do you want to have the CommCare Cloud environment setup on login?
(y/n):

answer with y. This will make commcare-cloud available to run every time you log in.

To check that commcare-cloud is now installed, run

admin@control.example.com:~$ commcare-cloud -h
usage: commcare-cloud [-h] [--control]

{64-test,development,echis,icds,icds-new,pna,production,softlayer,
→˓staging,swiss}

{bootstrap-users,ansible-playbook,django-manage,aps,tmux,ap,
→˓validate-environment-settings,deploy-stack,service,update-supervisor-confs,update-

(continues on next page)

138 Chapter 9. Reference Annexure



CommCareHQ Deployment

(continued from previous page)

→˓users,ping,migrate_couchdb,lookup,run-module,update-config,mosh,after-reboot,ssh,
→˓downtime,fab,update-local-known-hosts,migrate-couchdb,run-shell-command}

...

. . . and then much more help output describing each possible command.

If you get to this point, congratulations! commcare-cloud is installed.

Manual Installation

You will need python 3.10 installed to follow these instructions. See installation/2-manual-install:Upgrade to Python
3.10 for instructions on getting it installed on Ubuntu 22.04. Steps for other operating systems may differ.

Setup

Download and run the control/init.sh script. This should be run from your home directory:

source <(curl -s https://raw.githubusercontent.com/dimagi/commcare-cloud/master/control/
→˓init.sh)

You will see the following prompt

Do you want to have the CommCare Cloud environment setup on login?
(y/n):

If you answer ‘y’ then a line will be added to your .profile that will automatically run source ~/init-ansible when
you log in, sets up the commcare-cloud environment. Otherwise, you can choose to run source ~/init-ansible
manually to setup the environment during future sessions.

You may now use commcare-cloud or its shorter alias cchq whenever you’re in the virtualenv.

Manual setup

If you’d rather use your own virtualenv name or a different commcare-cloud repo location, or if the script above did
not work.

Setup and activate the virtualenv

NOTE: The virtualenv name and location may be customized, below example uses ``cchq`` and ``~/.virtualenvs/cchq``.
Adjust according to your preferred configuration.

# using venv
python3.10 -m venv ~/.virtualenvs/cchq
source ~/.virtualenvs/cchq/bin/activate

# -- or --

# using pyenv
pyenv virtualenv 3.10 cchq
pyenv activate cchq

9.1. CommCare Cloud Reference 139



CommCareHQ Deployment

Install commcare-cloud with pip

# IMPORTANT: ensure the virtual environment is activated
git clone https://github.com/dimagi/commcare-cloud.git
cd ./commcare-cloud
pip install --upgrade pip-tools
pip-sync requirements.txt
pip install -e .
manage-commcare-cloud install

# (Optional) To use commcare-cloud (cchq) without needing an active virtual
# environment, run the following and respond to the prompts.
manage-commcare-cloud configure

If you opted out of the final manage-commcare-cloud configure step and you have a local environments directory
or cloned the repo somewhere other than ~/commcare-cloud you should set one or both of the following in your bash
profile (~/.profile) as needed:

# for non-standard commcare-cloud repo location
export COMMCARE_CLOUD_REPO=/path/to/your/commcare-cloud

# for local environments (other than $COMMCARE_CLOUD_REPO/environments)
export COMMCARE_CLOUD_ENVIRONMENTS=/path/to/your/environments

git-hook setup

After completing the manual setup, make sure you install the git hooks. From the ~/commcare-cloud directory, run the
following:

(cchq)$ ./git-hooks/install.sh

This will make sure you never commit an unencrypted vault.yml file.

Point to your environments directory

commcare-cloud needs to know where environments config directory is located to be able to run commands against
the servers in that environment. See Configuring your CommCare Cloud Environments Directory to understand what
this directory is. The instructions on how this directory is created are part of the CommCare HQ installation docs in
Quick Install on Single Server and Install Using Commcare-Cloud on one or more machines.

Once you have installed commcare-cloud, you can do below to point commcare-cloud to your environments directory.

• Download the environments directory to any path that you own. Make sure the ownership permissions are set
right.

• Run COMMCARE_CLOUD_ENVIRONMENTS=/path/to/environments/folder manage-commcare-cloud
configure.

140 Chapter 9. Reference Annexure



CommCareHQ Deployment

9.1.2 Configuring your CommCare Cloud Environments Directory

Table of Contents

• Configuring your CommCare Cloud Environments Directory

– Creating environments directory

A core component getting commcare-cloud to work to manage your cluster or clusters is the environments directory.
This directory contains everything that is different about your organization (authorized users) and cluster environments
(IP addresses, machine roles, passwords, optional settings, etc.).

Creating environments directory

This directory is to be created manually when following Install Using Commcare-Cloud on one or more machines.
When following Quick Install on Single Server the script automatically creates this directory. Once created, we rec-
ommend you to to manage this via a version control system such as git, so that you can keep track of the changes and
share the directory with other team members so that they can perform server administration using commcare-cloud.

Going off the Dimagi example

To make things easy, the real environments dir that Dimagi uses to manage its own environments is committed to
the commcare-cloud repo at https://github.com/dimagi/commcare-cloud/tree/master/environments. The easiest way
to create a new environment is to model it after one of those.

Layout of an environments directory

Your environments dir (traditionally named environments) should look like this

• environments

– _authorized_keys

– _users

– <env1>

– <env2>

where <env1> (and <env2>, etc.) are is the environment’s name. Here we will describe the contents of directories
prefixed with an underscore (_). In the next section we will describe what goes in each environment’s directory.

_authorized_keys

Each team member who will be granted access to the machines of any of the environments should have their public
ssh key placed in this directory in a file named <username>.pub, where <username> is their username as it should
appear on each machine. These keys will be used to set up passwordless login to the machines on each cluster they
have access to.

For a guide to generating and using ssh keys, see this article on Generating a new SSH key and adding it to the ssh-agent.

9.1. CommCare Cloud Reference 141

https://github.com/dimagi/commcare-cloud/tree/master/environments
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/


CommCareHQ Deployment

_users

Minimally, this directory should contain one file named <your-organization>.yml. If you have more than one
environment, and you have two environments that require access from a different group of users, you may have one file
representing each of these groups. You may name the file anything you wish; you will reference these files by name in
the meta.yml file of each environment.

In the sample environments, this file is called admins.yml. You may use and edit this file if you wish.

Each of these files should contain YAML of the following format:

dev_users:
present:
- <username1>
- <username2>
...

absent:
- <username3>
- <username4>
...

The **present** section will have a list of users who have access to your servers. The name you add here should
be their desired system username, and should correspond to the name of their public key in <username>.pub under
``_authorized_keys` <#_authorized_keys>`_.

Each <username> must correspond to that used in a <username>.pub under .

The **absent** section lists those users whose access you want to remove from your servers when running the user
update scripts.

If you change this file, you will need to run the ``update-users` command <../commands/index.md#update-users>`_

Contents of an environment configuration directory

As mentioned above, commcare-cloud supports servicing multiple cluster environments. Each environment is given
a name. For example, at dimagi, our environments are named production, staging, and a few others. This name is
used for as the name of the directory, given as <env1>, <env2>, etc. above.

A commcare-cloud environment configuration is made up of the following files:

• ``app-processes.yml` <#app-processesyml>`_

• ``fab-settings.yml` <#fab-settingsyml>`_

• ``inventory.ini` <#inventoryini>`_

• ``known_hosts` <#known_hosts>`_

• ``meta.yml` <#metayml>`_

• ``postgresql.yml` <#postgresqlyml>`_

• ``proxy.yml` <#proxyyml>`_

• ``public.yml` <#publicyml>`_

• ``vault.yml` <#vaultyml>`_

The purpose of each of these files and their formats will be discussed in detail in the following sections.

142 Chapter 9. Reference Annexure



CommCareHQ Deployment

app-processes.yml

This file determines which background CommCare processes will get run on which machines in the cluster. The file is
split into 3 sections each with the same basic format:

<section>:
<host>:
<process / queue>:
# process configuration

The three sections are as follows:

• management_commands: These are usually a single process per cluster and are used to manage various system
queues.

• celery_processes: Each of the items listed here is a Celery queue.

• pillows: Each item listed is a the name of an ETL processor (aka pillow)

Each <host> must be a host string.

See app_processes.py for complete list of top-level properties for this file. These are subject to the defaults provided in
environmental-defaults/app-processes.yml.

Management Commands

management_commands:
<host>:
<command-name>:

<host>:
...

...

Each <command-name> must be one of the following:

• run_submission_reprocessing_queue: Reprocess failed form submissions

• queue_schedule_instances: Populates the SMS queue with scheduled messages

• handle_survey_actions: Handles SMS survey actions

• run_sms_queue: Processes queued SMS messages

• run_pillow_retry_queue: Retry queue for change feed errors

There is no per-process configuration.

Celery Processes

celery_processes:
<host>:
<queue-name>:
pooling: [gevent|prefork] # default prefork
concurrency: <int> # Required
max_tasks_per_child: <int>

<host>:
(continues on next page)

9.1. CommCare Cloud Reference 143

https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/environment/schemas/app_processes.py
https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/environmental-defaults/app-processes.yml


CommCareHQ Deployment

(continued from previous page)

...
...

Each <queue-name> must be one of the following values: async_restore_queue, background_queue,
case_rule_queue, celery, email_queue, export_download_queue, icds_dashboard_reports_queue,
linked_domain_queue, reminder_case_update_queue, reminder_queue, reminder_rule_queue,
repeat_record_queue, saved_exports_queue, sumologic_logs_queue, send_report_throttled,
sms_queue, submission_reprocessing_queue, ucr_indicator_queue, ucr_queue. For all features to
work, each of these queues must appear at least once, and up to once per host.

Under each <queue-name> goes the following parameters:

• concurrency: Required; the concurrency configured on each worker

• pooling: default prefork; specify prefork or gevent for the process pool type used on each worker in this
section

• max_tasks_per_child: default 50; only applicable for prefork pooling (corresponds to maxtasksperchild
celery worker command line arg)

• num_workers: default 1; the number of workers to create consuming from this queue on this host

The special queue names flower, beat can appear only once. These queues take no parameters (can leave as simply
{}).

Pillows

pillows:
<host>:
<ETL-processor-name>:
num_processes: <int>

<host>:
...

...

Each <ETL-processor-name> must be correspond to the name fields specified in settings.PILLOWTOPS:

AppDbChangeFeedPillow, ApplicationToElasticsearchPillow, CacheInvalidatePillow, case-pillow,
case_messaging_sync_pillow, CaseSearchToElasticsearchPillow, CaseToElasticsearchPillow,
DefaultChangeFeedPillow, DomainDbKafkaPillow, FormSubmissionMetadataTrackerPillow,
group-pillow, GroupPillow, GroupToUserPillow, kafka-ucr-main, kafka-ucr-static,
KafkaDomainPillow, LedgerToElasticsearchPillow, location-ucr-pillow, SqlSMSPillow,
UnknownUsersPillow, UpdateUserSyncHistoryPillow, user-pillow, UserCacheInvalidatePillow,
UserGroupsDbKafkaPillow, UserPillow, xform-pillow, XFormToElasticsearchPillow,

For all features to work, each of these ETL processors (called “pillows” internally to the CommCare HQ code base,
for no good reason beyond historical accident) just listed must appear at least once, and up to once per host. An ETL
processor not mentioned will not be run at all.

144 Chapter 9. Reference Annexure



CommCareHQ Deployment

fab-settings.yml

This file contains basic settings relevent to deploying updated versions CommCare HQ code.

inventory.ini

This is the Ansible Inventory file. It lists all the hosts releveant to the system and provides host groups for the different
services. This file can also contain host specific variables like hostname or configuration for the encrypted drive.

known_hosts

This file is optional and is auto-generated by running

commcare-cloud <env> update-local-known-hosts

For commcare-cloud commands that require opening ssh connections, this file is used instead of ~/.ssh/
known_hosts where possible. This allows a team to share a known_hosts file that is environment specific, which
has both security (depending on how used) and practical benefits (each team member does not have to ssh into each
machine and respond yes to typical ssh prompt asking whether to trust a given host based on its fingerprint).

meta.yml

This file contains some global settings for the environment.

postgresql.yml

This file contains configuration related to postgresql. For more detail see Configurating postgresql.yml.

proxy.yml

This file contains settings related to the Nginx proxy.

public.yml

This file contains the remainder of the settings for the environement that aren’t specified in any of the aforementioned
files.

vault.yml

This file contains sensitive information such as database passwords. The file is encrypted using Ansible Vault. For
information on managing this file see Managing Secrets with Vault

9.1. CommCare Cloud Reference 145

https://docs.ansible.com/ansible/playbooks_vault.html
https://github.com/dimagi/commcare-cloud/blob/master/src/commcare_cloud/ansible/README.md#managing-secrets-with-vault


CommCareHQ Deployment

9.1.3 Configurating postgresql.yml

Table of Contents

• Configurating postgresql.yml

– dbs
∗ main

∗ formplayer

∗ ucr

∗ synclogs

∗ form_processing

∗ “db config” type

– override
– SEPARATE_SYNCLOGS_DB
– SEPARATE_FORM_PROCESSING_DBS
– DEFAULT_POSTGRESQL_HOST
– REPORTING_DATABASES
– LOAD_BALANCED_APPS

For an example postgresql.yml file see environments/production/postgresql.yml.

The following properties are permitted in postgresql.yml.

You may notice that some of the properties have a Status, which can be either “Custom” or “Deprecated”. A status of
Custom means that the property is a back-door for a heavily customized environment, and should not used in a typical
environment. A status of Deprecated means that the property exists to support legacy environments that have not yet
adopted a new standard, and support may be removed for it in the future; a typical new enviornment should not set
these properties either.

dbs

Database-level config such as what machine each db is on. All properties rely on a conceptual “db config” type described
in more detail below.

main

• Type: db config

• Default values: .. code-block:: yaml

django_alias: default name: commcarehq django_migrate: True

Configuration for the main db, the db that the majority of tables live in.

146 Chapter 9. Reference Annexure

https://github.com/dimagi/commcare-cloud/blob/master/environments/production/postgresql.yml


CommCareHQ Deployment

formplayer

• Type: db config

• Default values: .. code-block:: yaml

django_alias: null name: formplayer

Configuration for the db that formplayer uses (which does not appear in Django settings).

ucr

• Type: db config

• Default values: .. code-block:: yaml

django_alias: ucr name: commcarehq_ucr django_migrate: False

Configuration for the db that UCRs are copied into.

synclogs

• Type: db config

• Default values: .. code-block:: yaml

django_alias: synclogs name: commcarehq_synclogs django_migrate: True

Configuration for the db that synclog tables live in.

form_processing

• Type: see below Configuration for the db that form, case, and related tables live in.

It is broken down into the proxy config and the config for partitions

proxy

• Type: db config with defaults:

• Default values: .. code-block:: yaml

django_alias: proxy name: commcarehq_proxy

Configuration for the proxy db in the partitioned setup.

9.1. CommCare Cloud Reference 147



CommCareHQ Deployment

proxy_standby

• Type: db config with defaults:

• Default values: .. code-block:: yaml

django_alias: proxy_standby name: commcarehq_proxy_standby

Configuration for the proxy db in the partitioned setup which can be used to query the standby partitions.

partitions

• Type: dict of partition name to (augmented) db config

Configurations for each of the partitions of the database. These special configs are augmented with the following
property. Partition names must be p1, p2, . . . , p<N>.

shards

• Type: pair of integers (list with two elements)

Inclusive start and end indices for the shard range. The shards property for all partitions combined must cover
the entire range of available shards, and the ranges must be in ascending order matching the order of the names of the
partitions (p1, p2, . . . , p<N>).

“db config” type

The core data type used repeatedly in this configuration is a db config, which has the following properties:

django_alias

• Type: string

Alias for the database. Used as the key for the entry in Django ``DATABASES` <https://docs.djangoproject.com/en/2.
0/ref/settings/#databases>`_ setting. Most aliases are preset, but for custom databases this can be specified. If missing,
the database will not appear in Django settings.

name

• Type: string

Name of the postgresql database. (See ``NAME` <https://docs.djangoproject.com/en/2.0/ref/settings/#name>`_.)

148 Chapter 9. Reference Annexure

https://docs.djangoproject.com/en/2.0/ref/settings/#databases
https://docs.djangoproject.com/en/2.0/ref/settings/#databases
https://docs.djangoproject.com/en/2.0/ref/settings/#name


CommCareHQ Deployment

host

• Type: host string

The host machine on which this database should live. (See ``HOST` <https://docs.djangoproject.com/en/2.0/ref/
settings/#host>`_.)

pgbouncer_host

• Type: host string

The host to use to run pgbouncer for this db. Defaults to “host”. Cannot be used if the more granular options
pgbouncer_hosts and pgbouncer_endpoints are set.

pgbouncer_hosts

• Type: List of host string

The list of hosts to use to run pgbouncer for this db. Defaults to [pgbouncer_host], and cannot be set explicitly if
pgbouncer_host is set. If set explicitly, pgbouncer_endpoint must also be set.

pgbouncer_endpoint

• Type: host string

The endpoint that other processes should use to communicate with pgbouncer for this db. Defaults to
pgbouncer_host, and connot be explicitly set if pgbouncer_host is set. If set explicitly, pgbouncer_hosts must
also be set.

The difference between pgbouncer_endpoints and pgbouncer_hosts is that pgbouncer_hosts says where pg-
bouncer should be installed and running for this db, whereas pgbouncer_endpoints says where other machines that
want to talk to pgbouncer for this db should point to. Often these are the same machines in which case you can use
pgbouncer_host as a shortcut to set both.

Some examples where you would want to set the pgbouncer_endpoints and pgbouncer_hosts independently:

• You have multiple pgbouncer_hosts in a network load balancer whose address pgbouncer_enpoint is set to.

• You want pgbouncer1 to be ready to switch over to in case pgbouncer0 fails. In that case, you set
pgbouncer_hosts to [pgbouncer0, pgbouncer1] and pgbouncer_endpoint to pgbouncer0.

port

• Type: int

The port to use when connecting to the database. (See ``PORT` <https://docs.djangoproject.com/en/2.0/ref/settings/
#port>`_.)

9.1. CommCare Cloud Reference 149

https://docs.djangoproject.com/en/2.0/ref/settings/#host
https://docs.djangoproject.com/en/2.0/ref/settings/#host
https://docs.djangoproject.com/en/2.0/ref/settings/#port
https://docs.djangoproject.com/en/2.0/ref/settings/#port


CommCareHQ Deployment

user

• Type: string

The username to use when connecting to the database. (See ``USER` <https://docs.djangoproject.com/en/2.0/ref/
settings/#user>`_.)

password

• Type: string

The password to use when connecting to the database. (See ``PASSWORD` <https://docs.djangoproject.com/en/2.0/
ref/settings/#password>`_.)

options

• Type: dict

(See ``OPTIONS` <https://docs.djangoproject.com/en/2.0/ref/settings/#std:setting-OPTIONS>`_.)

django_migrate

• Type: bool

Whether migrations should be run on this database. For all except in custom, this property is automatically determined.

query_stats

• Type: bool

• Default: False

Whether query statistics should be collected on this PostgreSQL db using the pg_stat_statements extension.

create

• Type: bool

• Default: True

Whether commcare-cloud should create this db (via Ansible).

override

• Type: dict (variables names to values)

Ansible postgresql role variables to override. See ansible/roles/postgresql/defaults/main.yml for the complete list
of variables.

As with any ansible variable, to override these on a per-host basis, you may set these as inventory host or group variables
in inventory.ini. Note, however, that variables you set there will not receive any validation, whereas variables set
here will be validated against the type in the defaults file linked above.

150 Chapter 9. Reference Annexure

https://docs.djangoproject.com/en/2.0/ref/settings/#user
https://docs.djangoproject.com/en/2.0/ref/settings/#user
https://docs.djangoproject.com/en/2.0/ref/settings/#password
https://docs.djangoproject.com/en/2.0/ref/settings/#password
https://docs.djangoproject.com/en/2.0/ref/settings/#std:setting-OPTIONS
https://github.com/dimagi/commcare-cloud/blob/master/ansible/roles/postgresql/defaults/main.yml


CommCareHQ Deployment

SEPARATE_SYNCLOGS_DB

• Type: boolean

• Default: True

• Status: Deprecated

Whether to save synclogs to a separate postgresql db. A value of False may lose support in the near future and is not
recommended.

SEPARATE_FORM_PROCESSING_DBS

• Type: boolean

• Default: True

• Status: Deprecated

Whether to save form, cases, and related data in a separate set of partitioned postgresql dbs. A value of False may
lose support in the near future and is not recommended.

DEFAULT_POSTGRESQL_HOST

• Type: host string

• Default: The first machine in the postgresql inventory group.

This value will be used as the host for any database without a different host explicitly set in ``dbs` <#dbs>`_.

REPORTING_DATABASES

• Type: dict

• Default: {"ucr": "ucr"}

• Status: Custom

Specify a mapping of UCR “engines”.

The keys define engine aliases, and can be anything. The values are either

• the django_alias of a postgreql database

or

• a spec for which (single) database to write to and a weighted list of databases to read from.

The latter option is formatted as follows:

WRITE: <django_alias>
READ:
- [<django_alias>, <weight>]
- [<django_alias>, <weight>]
...

where <weight> is a low-ish integer. The probability of hitting a given database with weight Wnis its normalized
weight, i.e. Wn/ (W:sub:1 + . . . + Wn\ ).

9.1. CommCare Cloud Reference 151



CommCareHQ Deployment

LOAD_BALANCED_APPS

• Type: dict

• Default: {}

• Status: Custom

Specify a list of django apps that can be read from multiple dbs.

The keys are the django app label. The values are a weighted list of databases to read from.

This is formatted as:

<app_name>:
- [<django_alias>, <weight>]
- [<django_alias>, <weight>]
...

where <weight> is a low-ish integer. The probability of hitting a given database with weight Wnis its normalized
weight, i.e. Wn/ (W:sub:1 + . . . + Wn).

9.1.4 Commands

This page explains how to run commcare-cloud commands to perform various actions on your environment and list of
all commcare-cloud commands and their usage.

Running Commands with commcare-cloud

To run any commcare-cloud command you need to install commcare-cloud first (Refer to the installation docs) and
activate its virtual environment.

All commcare-cloud commands take the following form:

commcare-cloud [--control] [--control-setup {yes,no}] <env> <command> ...

Positional Arguments

<env>

server environment to run against

Options

--control

Run command remotely on the control machine.

You can add --control directly after commcare-cloud to any command in order to run the command not from the
local machine using the local code, but from from the control machine for that environment, using the latest version of
commcare-cloud available.

It works by issuing a command to ssh into the control machine, update the code, and run the same command entered
locally but with --control removed. For long-running commands, you will have to remain connected to the the
control machine for the entirety of the run.

152 Chapter 9. Reference Annexure



CommCareHQ Deployment

--control-setup {yes,no}

Implies –control, and overrides the command’s run_setup_on_control_by_default value.

If set to ‘yes’, the latest version of the branch will be pulled and commcare-cloud will have all its dependencies updated
before the command is run. If set to ‘no’, the command will be run on whatever checkout/install of commcare-cloud is
already on the control machine. This defaults to ‘yes’ if command.run_setup_on_control_by_default is True, otherwise
to ‘no’.

cchq alias

Additionally, commcare-cloud is aliased to the easier-to-type cchq (short for “CommCare HQ”), so any command
you see here can also be run as

cchq <env> <command> <args...>

Underlying tools and common arguments

The commcare-cloud command line tool is by and large a relatively thin wrapper around the other tools it uses:
ansible, ansible-playbook, ssh, etc. For every command you run using commcare-cloud, it will print out the
underlying command that it is running, a faint blue / cyan color. In each case, if you copy and paste the printed command
directly, it will have essentially the same affect. (Note too that some commands run multiple underlying commands in
sequence, and that each command will be printed.)

Where possible, commcare-cloud is set up to pass any unknown arguments to the underlying tool. In addition, there
are a number of common arguments that are recognized by many commcare-cloud commands, and have similar
behavior on across them. Rather than include these on every command they apply to, we will list upfront these common
arguments and when they can be used.

To verify availability on any given command, you can always run the command with -h.

Ansible-backed commands

For most ansible-backed commands commcare-cloud will run in check mode first, and then ask you to confirm before
applying the changes. Since check mode does not make sense for all commands, there are some that do not follow this
pattern and apply the changes directly.

--skip-check

When this argument is included, the “check, ask, apply” behavior described above is circumvented, and the command
is instead applied directly

9.1. CommCare Cloud Reference 153



CommCareHQ Deployment

--quiet

Run the command without every prompting for permission to continue. At each point, the affirmative response is
assumed.

--branch <branch>

In the specific case that commcare-cloud has been installed from git source in egg mode (i.e. using pip install
-e .), it will always check that the checked-out git branch matches the <branch> that is thus passed in. If this arg is
not specified, it defaults to master. As a consequence, when running from git branch master, there is no need to use
the --branch arg explicitly.

--output [actionable|minimal]

The callback plugin to use for generating output. See ansible-doc -t callback -l and ansible-doc -t callback.

List of Commands

Internal Housekeeping for your commcare-cloud environments

validate-environment-settings Command

Validate your environment’s configuration files

commcare-cloud <env> validate-environment-settings

As you make changes to your environment files, you can use this command to check for validation errors or incompat-
ibilities.

update-local-known-hosts Command

Update the local known_hosts file of the environment configuration.

commcare-cloud <env> update-local-known-hosts

You can run this on a regular basis to avoid having to yes through the ssh prompts. Note that when you run this, you
are implicitly trusting that at the moment you run it, there is no man-in-the-middle attack going on, the type of security
breach that the SSH prompt is meant to mitigate against in the first place.

154 Chapter 9. Reference Annexure



CommCareHQ Deployment

Ad-hoc

lookup Command

Lookup remote hostname or IP address

commcare-cloud <env> lookup [server]

Positional Arguments

server

Server name/group: postgresql, proxy, webworkers, . . . The server name/group may be prefixed with ‘username@’ to
login as a specific user and may be terminated with ‘[]’ to choose one of multiple servers if there is more than one in
the group. For example: webworkers[0] will pick the first webworker. May also be omitted for environments with only
a single server.

Use ‘-’ for default (django_manage[0])

ssh Command

Connect to a remote host with ssh.

commcare-cloud <env> ssh [--quiet] [server]

This will also automatically add the ssh argument -A when <server> is control.

All trailing arguments are passed directly to ssh.

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

Positional Arguments

server

Server name/group: postgresql, proxy, webworkers, . . . The server name/group may be prefixed with ‘username@’ to
login as a specific user and may be terminated with ‘[]’ to choose one of multiple servers if there is more than one in
the group. For example: webworkers[0] will pick the first webworker. May also be omitted for environments with only
a single server.

Use ‘-’ for default (django_manage[0])

9.1. CommCare Cloud Reference 155



CommCareHQ Deployment

Options

--quiet

Don’t output the command to be run.

audit-environment Command

This command gathers information about your current environment’s state.

commcare-cloud <env> audit-environment [--use-factory-auth]

State information is saved in the ‘~/.commcare-cloud/audits’ directory. It is a good idea to run this before making any
major changes to your environment, as it allows you to have a record of your environment’s current state.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

scp Command

Copy file(s) over SSH.

commcare-cloud <env> scp [--quiet] source target

If a remote host is not specified in either the source or target, the source host defaults to django_manage[0].

Examples:

Copy remote django_manage file to local current directory

cchq <env> scp /tmp/file.txt .

Copy remote .txt files to local /texts/ directory

cchq <env> scp webworkers[0]:'/tmp/*.txt' /texts/

Copy local file to remote path

cchq <env> scp file.txt control:/tmp/other.txt

Limitations:

• Multiple source arguments are not supported.

• File paths do not auto-complete.

• Unlike normal scp, options with values are most easily passed after the target argument.

156 Chapter 9. Reference Annexure



CommCareHQ Deployment

• scp:// URIs are not supported.

• Copy from remote to remote is not supported.

• Probably many more.

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

Positional Arguments

source

Local pathname or remote host with optional path in the form [user@]host:[path].

target

Local pathname or remote host with optional path in the form [user@]host:[path].

Options

--quiet

Don’t output the command to be run.

run-module Command

Run an arbitrary Ansible module.

commcare-cloud <env> run-module [--use-factory-auth] inventory_group module module_args

Example

To print out the inventory_hostname ansible variable for each machine, run

commcare-cloud <env> run-module all debug "msg={{ '{{' }} inventory_hostname }}"

Positional Arguments

inventory_group

Machines to run on. Is anything that could be used in as a value for hosts in an playbook “play”, e.g. all for all
machines, webworkers for a single group, celery:pillowtop for multiple groups, etc. See the description in this
blog for more detail in what can go here.

9.1. CommCare Cloud Reference 157

http://goinbigdata.com/understanding-ansible-patterns/
http://goinbigdata.com/understanding-ansible-patterns/


CommCareHQ Deployment

module

The name of the ansible module to run. Complete list of built-in modules can be found at Module Index.

module_args

Args for the module, formatted as a single string. (Tip: put quotes around it, as it will likely contain spaces.) Both
arg1=value1 arg2=value2 syntax and {"arg1": "value1", "arg2": "value2"} syntax are accepted.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

The ansible options below are available as well

--list-hosts outputs a list of matching hosts; does not execute
anything else

--playbook-dir BASEDIR
Since this tool does not use playbooks, use this as a
substitute playbook directory.This sets the relative
path for many features including roles/ group_vars/
etc.

--syntax-check perform a syntax check on the playbook, but do not
execute it

--task-timeout TASK_TIMEOUT
set task timeout limit in seconds, must be positive
integer.

--vault-id VAULT_IDS the vault identity to use
--version show program's version number, config file location,

configured module search path, module location,
executable location and exit

-B SECONDS, --background SECONDS
run asynchronously, failing after X seconds
(default=N/A)

-M MODULE_PATH, --module-path MODULE_PATH
prepend colon-separated path(s) to module library (def
ault=~/.ansible/plugins/modules:/usr/share/ansible/plu
gins/modules)

-P POLL_INTERVAL, --poll POLL_INTERVAL
set the poll interval if using -B (default=15)

-e EXTRA_VARS, --extra-vars EXTRA_VARS
set additional variables as key=value or YAML/JSON, if
filename prepend with @

-f FORKS, --forks FORKS
specify number of parallel processes to use
(default=50)

-l SUBSET, --limit SUBSET
(continues on next page)

158 Chapter 9. Reference Annexure

http://docs.ansible.com/ansible/latest/modules/modules_by_category.html


CommCareHQ Deployment

(continued from previous page)

further limit selected hosts to an additional pattern
-o, --one-line condense output
-t TREE, --tree TREE log output to this directory
-v, --verbose verbose mode (-vvv for more, -vvvv to enable

connection debugging)

Privilege Escalation Options

control how and which user you become as on target hosts

--become-method BECOME_METHOD
privilege escalation method to use (default=sudo), use
`ansible-doc -t become -l` to list valid choices.

-K, --ask-become-pass
ask for privilege escalation password

Connection Options

control as whom and how to connect to hosts

--private-key PRIVATE_KEY_FILE, --key-file PRIVATE_KEY_FILE
use this file to authenticate the connection

--scp-extra-args SCP_EXTRA_ARGS
specify extra arguments to pass to scp only (e.g. -l)

--sftp-extra-args SFTP_EXTRA_ARGS
specify extra arguments to pass to sftp only (e.g. -f,
-l)

--ssh-common-args SSH_COMMON_ARGS
specify common arguments to pass to sftp/scp/ssh (e.g.
ProxyCommand)

--ssh-extra-args SSH_EXTRA_ARGS
specify extra arguments to pass to ssh only (e.g. -R)

-T TIMEOUT, --timeout TIMEOUT
override the connection timeout in seconds
(default=30)

-c CONNECTION, --connection CONNECTION
connection type to use (default=smart)

-k, --ask-pass ask for connection password
-u REMOTE_USER, --user REMOTE_USER

connect as this user (default=None)

Some actions do not make sense in Ad-Hoc (include, meta, etc)

9.1. CommCare Cloud Reference 159



CommCareHQ Deployment

run-shell-command Command

Run an arbitrary command via the Ansible shell module.

commcare-cloud <env> run-shell-command [--silence-warnings] [--use-factory-auth]␣
→˓inventory_group shell_command

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

Example

commcare-cloud <env> run-shell-command all 'df -h | grep /opt/data'

to get disk usage stats for /opt/data on every machine.

Positional Arguments

inventory_group

Machines to run on. Is anything that could be used in as a value for hosts in an playbook “play”, e.g. all for all
machines, webworkers for a single group, celery:pillowtop for multiple groups, etc. See the description in this
blog for more detail in what can go here.

shell_command

Command to run remotely. (Tip: put quotes around it, as it will likely contain spaces.) Cannot being with sudo; to do
that use the ansible --become option.

Options

--silence-warnings

Silence shell warnings (such as to use another module instead).

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

160 Chapter 9. Reference Annexure

http://goinbigdata.com/understanding-ansible-patterns/
http://goinbigdata.com/understanding-ansible-patterns/


CommCareHQ Deployment

The ansible options below are available as well

--list-hosts outputs a list of matching hosts; does not execute
anything else

--playbook-dir BASEDIR
Since this tool does not use playbooks, use this as a
substitute playbook directory.This sets the relative
path for many features including roles/ group_vars/
etc.

--syntax-check perform a syntax check on the playbook, but do not
execute it

--task-timeout TASK_TIMEOUT
set task timeout limit in seconds, must be positive
integer.

--vault-id VAULT_IDS the vault identity to use
--version show program's version number, config file location,

configured module search path, module location,
executable location and exit

-B SECONDS, --background SECONDS
run asynchronously, failing after X seconds
(default=N/A)

-M MODULE_PATH, --module-path MODULE_PATH
prepend colon-separated path(s) to module library (def
ault=~/.ansible/plugins/modules:/usr/share/ansible/plu
gins/modules)

-P POLL_INTERVAL, --poll POLL_INTERVAL
set the poll interval if using -B (default=15)

-e EXTRA_VARS, --extra-vars EXTRA_VARS
set additional variables as key=value or YAML/JSON, if
filename prepend with @

-f FORKS, --forks FORKS
specify number of parallel processes to use
(default=50)

-l SUBSET, --limit SUBSET
further limit selected hosts to an additional pattern

-o, --one-line condense output
-t TREE, --tree TREE log output to this directory
-v, --verbose verbose mode (-vvv for more, -vvvv to enable

connection debugging)

Privilege Escalation Options

control how and which user you become as on target hosts

--become-method BECOME_METHOD
privilege escalation method to use (default=sudo), use
`ansible-doc -t become -l` to list valid choices.

-K, --ask-become-pass
ask for privilege escalation password

9.1. CommCare Cloud Reference 161



CommCareHQ Deployment

Connection Options

control as whom and how to connect to hosts

--private-key PRIVATE_KEY_FILE, --key-file PRIVATE_KEY_FILE
use this file to authenticate the connection

--scp-extra-args SCP_EXTRA_ARGS
specify extra arguments to pass to scp only (e.g. -l)

--sftp-extra-args SFTP_EXTRA_ARGS
specify extra arguments to pass to sftp only (e.g. -f,
-l)

--ssh-common-args SSH_COMMON_ARGS
specify common arguments to pass to sftp/scp/ssh (e.g.
ProxyCommand)

--ssh-extra-args SSH_EXTRA_ARGS
specify extra arguments to pass to ssh only (e.g. -R)

-T TIMEOUT, --timeout TIMEOUT
override the connection timeout in seconds
(default=30)

-c CONNECTION, --connection CONNECTION
connection type to use (default=smart)

-k, --ask-pass ask for connection password
-u REMOTE_USER, --user REMOTE_USER

connect as this user (default=None)

Some actions do not make sense in Ad-Hoc (include, meta, etc)

send-datadog-event Command

Track an infrastructure maintainance event in Datadog

commcare-cloud <env> send-datadog-event [--tags [TAGS ...]] [--alert_type {error,warning,
→˓info,success}]

event_title event_text

Positional Arguments

event_title

Title of the datadog event.

162 Chapter 9. Reference Annexure



CommCareHQ Deployment

event_text

Text content of the datadog event.

Options

--tags [TAGS ...]

Additional tags e.g. host:web2

--alert_type {error,warning,info,success}

Alert type.

django-manage Command

Run a django management command.

commcare-cloud <env> django-manage [--tmux] [--server SERVER] [--release RELEASE] [--tee␣
→˓TEE_FILE] [--quiet]

commcare-cloud <env> django-manage ... runs ./manage.py ... on the first django_manage machine of
<env> or server you specify. Omit <command> to see a full list of possible commands.

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

Example

To open a django shell in a tmux window using the 2018-04-13_18.16 release.

commcare-cloud <env> django-manage --tmux --release 2018-04-13_18.16 shell

To do this on a specific server

commcare-cloud <env> django-manage --tmux shell --server web0

Options

--tmux

If this option is included, the management command will be run in a new tmux window under the cchq user. You
may then exit using the customary tmux command ^b d, and resume the session later. This is especially useful for
long-running commands.

The tmux session will be unique to your user. If you want to be able to share your session with other users, create the
tmux session manually on the machine under a shared user account.

9.1. CommCare Cloud Reference 163



CommCareHQ Deployment

--server SERVER

Server to run management command on. Defaults to first server under django_manage inventory group

--release RELEASE

Name of release to run under. E.g. ‘2018-04-13_18.16’. If none is specified, the current release will be used.

--tee TEE_FILE

Tee output to the screen and to this file on the remote machine

--quiet

Don’t output the command to be run.

tmux Command

Connect to a remote host with ssh and open a tmux session.

commcare-cloud <env> tmux [--quiet] [server] [remote_command]

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

Example

Rejoin last open tmux window.

commcare-cloud <env> tmux -

Positional Arguments

server

Server name/group: postgresql, proxy, webworkers, . . . The server name/group may be prefixed with ‘username@’ to
login as a specific user and may be terminated with ‘[]’ to choose one of multiple servers if there is more than one in
the group. For example: webworkers[0] will pick the first webworker. May also be omitted for environments with only
a single server.

Use ‘-’ for default (django_manage[0])

164 Chapter 9. Reference Annexure



CommCareHQ Deployment

remote_command

Command to run in the tmux. If a command is specified, then it will always run in a new window. If a command is not
specified, then it will rejoin the most recently visited tmux window; only if there are no currently open tmux windows
will a new one be opened.

Options

--quiet

Don’t output the command to be run.

export-sentry-events Command

Export Sentry events. One line per event JSON.

commcare-cloud <env> export-sentry-events -k API_KEY -i ISSUE_ID [--full] [--cursor␣
→˓CURSOR]

Options

-k API_KEY, --api-key API_KEY

Sentry API Key

-i ISSUE_ID, --issue-id ISSUE_ID

Sentry project ID

--full

Export the full event details

--cursor CURSOR

Starting position for the cursor

9.1. CommCare Cloud Reference 165



CommCareHQ Deployment

pillow-topic-assignments Command

Print out the list of Kafka partitions assigned to each pillow process.

commcare-cloud <env> pillow-topic-assignments [--csv] pillow_name

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

Positional Arguments

pillow_name

Name of the pillow.

Options

--csv

Output as CSV

Operational

secrets Command

View and edit secrets through the CLI

commcare-cloud <env> secrets {view,edit,list-append,list-remove} secret_name

Positional Arguments

{view,edit,list-append,list-remove}

secret_name

migrate-secrets Command

Migrate secrets from one backend to another

commcare-cloud <env> migrate-secrets [--to-backend TO_BACKEND] from_backend

166 Chapter 9. Reference Annexure



CommCareHQ Deployment

Positional Arguments

from_backend

Options

--to-backend TO_BACKEND

ping Command

Ping specified or all machines to see if they have been provisioned yet.

commcare-cloud <env> ping [--use-factory-auth] inventory_group

Positional Arguments

inventory_group

Machines to run on. Is anything that could be used in as a value for hosts in an playbook “play”, e.g. all for all
machines, webworkers for a single group, celery:pillowtop for multiple groups, etc. See the description in this
blog for more detail in what can go here.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

ansible-playbook Command

(Alias ap)

Run a playbook as you would with ansible-playbook

commcare-cloud <env> ansible-playbook [--use-factory-auth] playbook

By default, you will see –check output and then asked whether to apply.

9.1. CommCare Cloud Reference 167

http://goinbigdata.com/understanding-ansible-patterns/
http://goinbigdata.com/understanding-ansible-patterns/


CommCareHQ Deployment

Example

commcare-cloud <env> ansible-playbook deploy_proxy.yml --limit=proxy

Positional Arguments

playbook

The ansible playbook .yml file to run. Options are the *.yml files located under commcare_cloud/ansible which is
under src for an egg install and under <virtualenv>/lib/python<version>/site-packages for a wheel install.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

The ansible-playbook options below are available as well

--flush-cache clear the fact cache for every host in inventory
--force-handlers run handlers even if a task fails
--list-hosts outputs a list of matching hosts; does not execute

anything else
--list-tags list all available tags
--list-tasks list all tasks that would be executed
--skip-tags SKIP_TAGS

only run plays and tasks whose tags do not match these
values

--start-at-task START_AT_TASK
start the playbook at the task matching this name

--step one-step-at-a-time: confirm each task before running
--syntax-check perform a syntax check on the playbook, but do not

execute it
--vault-id VAULT_IDS the vault identity to use
--version show program's version number, config file location,

configured module search path, module location,
executable location and exit

-M MODULE_PATH, --module-path MODULE_PATH
prepend colon-separated path(s) to module library (def
ault=~/.ansible/plugins/modules:/usr/share/ansible/plu
gins/modules)

-e EXTRA_VARS, --extra-vars EXTRA_VARS
set additional variables as key=value or YAML/JSON, if
filename prepend with @

-f FORKS, --forks FORKS
specify number of parallel processes to use
(default=50)

-t TAGS, --tags TAGS only run plays and tasks tagged with these values
(continues on next page)

168 Chapter 9. Reference Annexure



CommCareHQ Deployment

(continued from previous page)

-v, --verbose verbose mode (-vvv for more, -vvvv to enable
connection debugging)

Connection Options

control as whom and how to connect to hosts

--private-key PRIVATE_KEY_FILE, --key-file PRIVATE_KEY_FILE
use this file to authenticate the connection

--scp-extra-args SCP_EXTRA_ARGS
specify extra arguments to pass to scp only (e.g. -l)

--sftp-extra-args SFTP_EXTRA_ARGS
specify extra arguments to pass to sftp only (e.g. -f,
-l)

--ssh-common-args SSH_COMMON_ARGS
specify common arguments to pass to sftp/scp/ssh (e.g.
ProxyCommand)

--ssh-extra-args SSH_EXTRA_ARGS
specify extra arguments to pass to ssh only (e.g. -R)

-T TIMEOUT, --timeout TIMEOUT
override the connection timeout in seconds
(default=30)

-c CONNECTION, --connection CONNECTION
connection type to use (default=smart)

-k, --ask-pass ask for connection password
-u REMOTE_USER, --user REMOTE_USER

connect as this user (default=None)

Privilege Escalation Options

control how and which user you become as on target hosts

--become-method BECOME_METHOD
privilege escalation method to use (default=sudo), use
`ansible-doc -t become -l` to list valid choices.

--become-user BECOME_USER
run operations as this user (default=root)

-K, --ask-become-pass
ask for privilege escalation password

-b, --become run operations with become (does not imply password
prompting)

9.1. CommCare Cloud Reference 169



CommCareHQ Deployment

deploy-stack Command

(Alias aps)

Run the ansible playbook for deploying the entire stack.

commcare-cloud <env> deploy-stack [--use-factory-auth] [--first-time]

Often used in conjunction with –limit and/or –tag for a more specific update.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

--first-time

Use this flag for running against a newly-created machine.

It will first use factory auth to set up users, and then will do the rest of deploy-stack normally, but skipping check mode.

Running with this flag is equivalent to

commcare-cloud <env> bootstrap-users <...args>
commcare-cloud <env> deploy-stack --skip-check --skip-tags=users <...args>

If you run and it fails half way, when you’re ready to retry, you’re probably better off running

commcare-cloud <env> deploy-stack --skip-check --skip-tags=users <...args>

since if it made it through bootstrap-users you won’t be able to run bootstrap-users again.

update-config Command

Run the ansible playbook for updating app config.

commcare-cloud <env> update-config

This includes django localsettings.py and formplayer application.properties.

170 Chapter 9. Reference Annexure



CommCareHQ Deployment

after-reboot Command

Bring a just-rebooted machine back into operation.

commcare-cloud <env> after-reboot [--use-factory-auth] inventory_group

Includes mounting the encrypted drive. This command never runs in check mode.

Positional Arguments

inventory_group

Machines to run on. Is anything that could be used in as a value for hosts in an playbook “play”, e.g. all for all
machines, webworkers for a single group, celery:pillowtop for multiple groups, etc. See the description in this
blog for more detail in what can go here.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

bootstrap-users Command

Add users to a set of new machines as root.

commcare-cloud <env> bootstrap-users [--use-factory-auth]

This must be done before any other user can log in.

This will set up machines to reject root login and require password-less logins based on the usernames and public keys
you have specified in your environment. This can only be run once per machine; if after running it you would like to
run it again, you have to use update-users below instead.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

9.1. CommCare Cloud Reference 171

http://goinbigdata.com/understanding-ansible-patterns/
http://goinbigdata.com/understanding-ansible-patterns/


CommCareHQ Deployment

update-users Command

Bring users up to date with the current CommCare Cloud settings.

commcare-cloud <env> update-users [--use-factory-auth]

In steady state this command (and not bootstrap-users) should be used to keep machine user accounts, permissions,
and login information up to date.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

update-user-key Command

Update a single user’s public key (because update-users takes forever).

commcare-cloud <env> update-user-key [--use-factory-auth] username

Positional Arguments

username

username who owns the public key

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

update-supervisor-confs Command

Updates the supervisor configuration files for services required by CommCare.

commcare-cloud <env> update-supervisor-confs [--use-factory-auth]

These services are defined in app-processes.yml.

172 Chapter 9. Reference Annexure



CommCareHQ Deployment

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

fab Command

Placeholder for obsolete fab commands

commcare-cloud <env> fab [-l] [fab_command]

Positional Arguments

fab_command

The name of the obsolete fab command.

Options

-l

Use -l instead of a command to see the full list of commands.

Obsolete fab commands

Obsolete fab command Replaced by 'commcare-cloud ENV ...'
-------------------- --------------------------------------
check_status ping all

service postgresql status
service elasticsearch status

clean_releases clean-releases [--keep=N]
deploy_commcare deploy commcare
kill_stale_celery_workers kill-stale-celery-workers
manage django-manage
perform_system_checks perform-system-checks
preindex_views preindex-views
restart_services service commcare restart
restart_webworkers service webworker restart
rollback deploy commcare --resume=PREVIOUS_RELEASE

Use the 'list-releases' command to get valid release names.

(continues on next page)

9.1. CommCare Cloud Reference 173



CommCareHQ Deployment

(continued from previous page)

rollback_formplayer ansible-playbook rollback_formplayer.yml --tags=rollback
setup_limited_release deploy commcare --private [--keep-days=N] [--commcare-rev=HQ_
→˓BRANCH]
setup_release deploy commcare --private --limit=all [--keep-days=N] [--
→˓commcare-rev=HQ_BRANCH]
start_celery service celery start
start_pillows service pillowtop start
stop_celery service celery stop
stop_pillows service pillowtop stop
supervisorctl service NAME ACTION
update_current deploy commcare --resume=RELEASE_NAME

deploy Command

Deploy CommCare

commcare-cloud <env> deploy [--resume RELEASE_NAME] [--private] [-l SUBSET] [--keep-days␣
→˓KEEP_DAYS] [--skip-record]

[--commcare-rev COMMCARE_REV] [--ignore-kafka-checkpoint-
→˓warning] [--update-config]

[{commcare,formplayer} ...]

Positional Arguments

{commcare,formplayer}

Component(s) to deploy. Default is ‘commcare’, or if always_deploy_formplayer is set in meta.yml, ‘commcare form-
player’

Options

--resume RELEASE_NAME

Rather than starting a new deploy, resume a previous release. This option can be used to “rollback” to a previous
release. Use the ‘list-releases’ command to get valid release names.

--private

Set up a private release for running management commands. This option implies –limit=django_manage. Use
–limit=all to set up a private release on all applicable hosts.

174 Chapter 9. Reference Annexure



CommCareHQ Deployment

-l SUBSET, --limit SUBSET

Limit selected hosts.

--keep-days KEEP_DAYS

The number of days to keep the release before it will be purged.

--skip-record

Skip the steps involved in recording and announcing the fact of the deploy.

--commcare-rev COMMCARE_REV

The name of the commcare-hq git branch, tag, or SHA-1 commit hash to deploy.

--ignore-kafka-checkpoint-warning

Do not block deploy if Kafka checkpoints are unavailable.

--update-config

Generate new localsettings.py rather than copying from the previous release.

list-releases Command

List names that can be passed to deploy --resume=RELEASE_NAME

commcare-cloud <env> list-releases [--limit LIMIT]

Options

--limit LIMIT

Run command on limited host(s). Default: webworkers[0]

9.1. CommCare Cloud Reference 175



CommCareHQ Deployment

clean-releases Command

Cleans old and failed deploys from the ~/www/ENV/releases/ directory.

commcare-cloud <env> clean-releases [-k N] [-x [EXCLUDE ...]]

Options

-k N, --keep N

The number of releases to retain. Default: 3

-x [EXCLUDE ...], --exclude [EXCLUDE ...]

Extra release names to exclude from cleanup, in addition to the automatic exclusions such as the current release.

preindex-views Command

commcare-cloud <env> preindex-views [--commcare-rev COMMCARE_REV] [--release RELEASE_
→˓NAME]

Set up a private release on the first pillowtop machine and run preindex_everything with that release.

Options

--commcare-rev COMMCARE_REV

The name of the commcare-hq git branch, tag, or SHA-1 commit hash to deploy.

--release RELEASE_NAME

Use/resume an existing release rather than creating a new one.

service Command

Manage services.

commcare-cloud <env> service [--only PROCESS_PATTERN]
{celery,citusdb,commcare,couchdb2,elasticsearch,

→˓elasticsearch-classic,formplayer,kafka,nginx,pillowtop,postgresql,rabbitmq,redis,
→˓webworker}

[{celery,citusdb,commcare,couchdb2,elasticsearch,
(continues on next page)

176 Chapter 9. Reference Annexure



CommCareHQ Deployment

(continued from previous page)

→˓elasticsearch-classic,formplayer,kafka,nginx,pillowtop,postgresql,rabbitmq,redis,
→˓webworker} ...]

{start,stop,restart,status,logs,help}

Example

cchq <env> service postgresql status
cchq <env> service celery help
cchq <env> service celery logs
cchq <env> service celery restart --limit <host>
cchq <env> service celery restart --only <queue-name>,<queue-name>:<queue_num>
cchq <env> service pillowtop restart --limit <host> --only <pillow-name>

Services are grouped together to form conceptual service groups. Thus the postgresql service group applies to both
the postgresql service and the pgbouncer service. We’ll call the actual services “subservices” here.

Positional Arguments

{celery,citusdb,commcare,couchdb2,elasticsearch,elasticsearch-classic,formplayer,kafka,
nginx,pillowtop,postgresql,rabbitmq,redis,webworker}

The name of the service group(s) to apply the action to. There is a preset list of service groups that are supported.
More than one service may be supplied as separate arguments in a row.

{start,stop,restart,status,logs,help}

Action can be status, start, stop, restart, or logs. This action is applied to every matching service.

Options

--only PROCESS_PATTERN

Sub-service name to limit action to. Format as ‘name’ or ‘name:number’. Use ‘help’ action to list all options.

migrate-couchdb Command

(Alias migrate_couchdb)

Perform a CouchDB migration

commcare-cloud <env> migrate-couchdb [--no-stop] migration_plan {describe,plan,migrate,
→˓commit,clean}

This is a recent and advanced addition to the capabilities, and is not yet ready for widespread use. At such a time as it
is ready, it will be more thoroughly documented.

9.1. CommCare Cloud Reference 177



CommCareHQ Deployment

Positional Arguments

migration_plan

Path to migration plan file

{describe,plan,migrate,commit,clean}

Action to perform

• describe: Print out cluster info

• plan: generate plan details from migration plan

• migrate: stop nodes and copy shard data according to plan

• commit: update database docs with new shard allocation

• clean: remove shard files from hosts where they aren’t needed

Options

--no-stop

When used with migrate, operate on live couchdb cluster without stopping nodes.

This is potentially dangerous. If the sets of a shard’s old locations and new locations are disjoint—i.e. if there are no
“pivot” locations for a shard—then running migrate and commit without stopping couchdb will result in data loss. If
your shard reallocation has a pivot location for each shard, then it’s acceptable to do live.

downtime Command

Manage downtime for the selected environment.

commcare-cloud <env> downtime [-m MESSAGE] [-d DURATION] {start,end}

This notifies Datadog of the planned downtime so that is is recorded in the history, and so that during it service alerts
are silenced.

Positional Arguments

{start,end}

Options

-m MESSAGE, --message MESSAGE

Optional message to set on Datadog.

178 Chapter 9. Reference Annexure



CommCareHQ Deployment

-d DURATION, --duration DURATION

Max duration in hours for the Datadog downtime after which it will be auto-cancelled. This is a safeguard against
downtime remaining active and preventing future alerts. Default: 24 hours

copy-files Command

Copy files from multiple sources to targets.

commcare-cloud <env> copy-files plan_path {prepare,copy,cleanup}

This is a general purpose command that can be used to copy files between hosts in the cluster.

Files are copied using rsync from the target host. This tool assumes that the specified user on the source host has
permissions to read the files being copied.

The plan file must be formatted as follows:

source_env: env1 (optional if source is different from target;
SSH access must be allowed from the target host(s) to source host(s))

copy_files:
- <target-host>:

- source_host: <source-host>
source_user: <user>
source_dir: <source-dir>
target_dir: <target-dir>
rsync_args: []
files:
- test/
- test1/test-file.txt

exclude:
- logs/*
- test/temp.txt

• copy_files: Multiple target hosts can be listed.

• target-host: Hostname or IP of the target host. Multiple source definitions can be listed for each target host.

• source-host: Hostname or IP of the source host.

• source-user: (optional) User to ssh as from target to source. Defaults to ‘ansible’. This user must have permis-
sions to read the files being copied.

• source-dir: The base directory from which all source files referenced.

• target-dir: Directory on the target host to copy the files to.

• rsync_args: Additional arguments to pass to rsync.

• files: List of files to copy. File paths are relative to source-dir. Directories can be included and must end with
a /.

• exclude: (optional) List of relative paths to exclude from the source-dir. Supports wildcards e.g. “logs/*”.

9.1. CommCare Cloud Reference 179



CommCareHQ Deployment

Positional Arguments

plan_path

Path to plan file

{prepare,copy,cleanup}

Action to perform

• prepare: generate the scripts and push them to the target servers

• copy: execute the scripts

• cleanup: remove temporary files and remote auth

list-postgresql-dbs Command

Example:

commcare-cloud <env> list-postgresql-dbs [--compare]

To list all database on a particular environment.

commcare-cloud <env> list-postgresql-dbs

Options

--compare

Gives additional databases on the server.

celery-resource-report Command

Report of celery resources by queue.

commcare-cloud <env> celery-resource-report [--show-workers] [--csv]

180 Chapter 9. Reference Annexure



CommCareHQ Deployment

Options

--show-workers

Includes the list of worker nodes for each queue

--csv

Output table as CSV

pillow-resource-report Command

Report of pillow resources.

commcare-cloud <env> pillow-resource-report [--csv]

Options

--csv

Output table as CSV

kill-stale-celery-workers Command

Kill celery workers that failed to properly go into warm shutdown.

commcare-cloud <env> kill-stale-celery-workers

When used with –control, this command skips the slow setup. To force setup, use –control-setup=yes instead.

perform-system-checks Command

commcare-cloud <env> perform-system-checks

Check the Django project for potential problems in two phases, first check all apps, then run database checks only.

See https://docs.djangoproject.com/en/dev/ref/django-admin/#check

9.1. CommCare Cloud Reference 181



CommCareHQ Deployment

couchdb-cluster-info Command

Output information about the CouchDB cluster.

commcare-cloud <env> couchdb-cluster-info [--raw] [--shard-counts] [--database DATABASE]␣
→˓[--couch-port COUCH_PORT]

[--couch-local-port COUCH_LOCAL_PORT] [--
→˓couchdb-version COUCHDB_VERSION]

Shard counts are displayed as follows

* a single number if all nodes have the same count
* the count on the first node followed by the difference in each following node
e.g. 2000,+1,-2 indicates that the counts are 2000,2001,1998

Options

--raw

Output raw shard allocations as YAML instead of printing tables

--shard-counts

Include document counts for each shard

--database DATABASE

Only show output for this database

--couch-port COUCH_PORT

CouchDB port. Defaults to 15984

--couch-local-port COUCH_LOCAL_PORT

CouchDB local port (only applicable to CouchDB version < ‘3.0.0’). Defaults to 15986

182 Chapter 9. Reference Annexure



CommCareHQ Deployment

--couchdb-version COUCHDB_VERSION

CouchDB version. Assumes ‘2.3.1’ or couchdb_version if set in public.yml

terraform Command

Run terraform for this env with the given arguments

commcare-cloud <env> terraform [--skip-secrets] [--apply-immediately] [--username␣
→˓USERNAME]

Options

--skip-secrets

Skip regenerating the secrets file.

Good for not having to enter vault password again.

--apply-immediately

Apply immediately regardless fo the default.

In RDS where the default is to apply in the next maintenance window, use this to apply immediately instead. This may
result in a service interruption.

--username USERNAME

The username of the user whose public key will be put on new servers.

Normally this would be your username. Defaults to the value of the COMMCARE_CLOUD_DEFAULT_USERNAME
environment variable or else the username of the user running the command.

terraform-migrate-state Command

Apply unapplied state migrations in commcare_cloud/commands/terraform/migrations

commcare-cloud <env> terraform-migrate-state [--replay-from REPLAY_FROM]

This migration tool should exist as a generic tool for terraform, but terraform is still not that mature, and it doesn’t seem
to exist yet.

Terraform assigns each resource an address so that it can map it back to the code. However, often when you change
the code, the addresses no longer map to the same place. For this, terraform offers the terraform state mv <address>
<new_address> command, so you can tell it how existing resources map to your new code.

This is a tedious task, and often follows a very predictable renaming pattern. This command helps fill this gap.

9.1. CommCare Cloud Reference 183



CommCareHQ Deployment

Options

--replay-from REPLAY_FROM

Set the last applied migration value to this number before running. Will begin running migrations after this number,
not including it.

aws-sign-in Command

Use your MFA device to “sign in” to AWS for <duration> minutes (default 30)

commcare-cloud <env> aws-sign-in [--duration-minutes DURATION_MINUTES]

This will store the temporary session credentials in ~/.aws/credentials under a profile named with the pattern
“<aws_profile>:profile”. After this you can use other AWS-related commands for up to <duration> minutes before
having to sign in again.

Options

--duration-minutes DURATION_MINUTES

Stay signed in for this many minutes

aws-list Command

List endpoints (ec2, rds, etc.) on AWS

commcare-cloud <env> aws-list

aws-fill-inventory Command

Fill inventory.ini.j2 using AWS resource values cached in aws-resources.yml

commcare-cloud <env> aws-fill-inventory [--cached]

If –cached is not specified, also refresh aws-resources.yml to match what is actually in AWS.

184 Chapter 9. Reference Annexure



CommCareHQ Deployment

Options

--cached

Use the values set in aws-resources.yml rather than fetching from AWS.

This runs much more quickly and gives the same result, provided no changes have been made to our actual resources
in AWS.

openvpn-activate-user Command

Give a OpenVPN user a temporary password (the ansible user password)

commcare-cloud <env> openvpn-activate-user [--use-factory-auth] vpn_user

to allow the user to connect to the VPN, log in, and change their password using

cchq <env> openvpn-claim-user

Positional Arguments

vpn_user

The user to activate.

Must be one of the defined ssh users defined for the environment.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

openvpn-claim-user Command

Claim an OpenVPN user as your own, setting its password

commcare-cloud <env> openvpn-claim-user [--use-factory-auth] vpn_user

9.1. CommCare Cloud Reference 185



CommCareHQ Deployment

Positional Arguments

vpn_user

The user to claim.

Must be one of the defined ssh users defined for the environment.

Options

--use-factory-auth

authenticate using the pem file (or prompt for root password if there is no pem file)

forward-port Command

Port forward to access a remote admin console

commcare-cloud <env> forward-port {flower,couch,elasticsearch}

Positional Arguments

{flower,couch,elasticsearch}

The remote service to port forward. Must be one of couch,elasticsearch,flower.

9.1.5 Slack Notifications from CommCare Cloud

commcare-cloud can be configured to send event notifications to Slack such as pre and post deploy messages.

To configure commcare-cloud to send messages to Slack:

1. Create a Slack app and copy the access token.

The app will require the following authentication scopes:

1. channels:join

2. chat:write

3. reactions:write

For an already installed app the app token can be found in the app settings under “Install App”.

2. Set the access token as a commcare-cloud secret:

Run the following command and paste in the token when prompted:

commcare-cloud <env> secrets edit slack_token

186 Chapter 9. Reference Annexure

https://api.slack.com/authentication/basics


CommCareHQ Deployment

3. Set the value of slack_notifications_channel in the environment meta.yml file. This should be the ID of
the Slack channel to send notifications to.

slack_notifications_channel: "C0WLJ3XYZ"

To get the ID you can open the channel in a web browser and copy the ID from the URL:

https://app.slack.com/client/.../C0WLJ3XYZ

9.2 User Access Management

9.2.1 Setting up CommCare HQ Server Administrators

It is possible that a team hosting CommCare HQ may have multiple developers managing the server environment.
For a developer (referred to as user in rest of this doc) to be able to enter and execute commands on the server using
commcare cloud, users have to be added and then configured. Through the lifetime of a project new users might need
to be added to the servers and some users may need to be removed.

This document describes the process of how to set up additional users on the server and how to remove an existing user.

The process to onboard new users as server administrators involves creating an account for the users on all the servers,
adding their SSH key to the servers and finally the users setting up their commcare-cloud on their local machine or on
a shared server to execute commcare-cloud commands that perform server administration.

Users can be added to the server in one of two ways:

• During installation

• After installation (in steady state)

After the user(s) have been added, the new users need to set up their commcare-cloud. This involves

1. Cloning commcare cloud repo.

2. Installing commcare cloud.

3. Configuring commcare cloud to use the already existing environments folder that is set up during installation.

Adding users during installation

This is done during the installation. The process is described in the installation documentation in Install Using
Commcare-Cloud on one or more machines and Quick Install on Single Server.

Adding and Removing users in steady state

Only users who have access to the servers and the environments config directory created during the installation can add
new users or remove users.

In order for a user to be added (or removed) to all the servers in the environment in steady state, the following steps are
required (any user that has already been successfully added can execute this).

1. Add <username>.pub key to environments/_authorized_keys folder.

2. Add <username> to the present section in the admins.yml file in environments/_users/admin.yml.

3. Run cchq <env_name> update-users to create the newly added users and add their SSH keys to the servers.

9.2. User Access Management 187



CommCareHQ Deployment

To remove a user, add <username> to the absent section in the admins.yml file in environments/_users/admin.
yml and run the update-users command.

Running Commands using commcare-cloud

The new users need to install commcare-cloud and configre commcare-cloud to the the environments config directory
to be able to run the commands. Refer to commcare-cloud reference to know how to do this.

9.3 Firefighting Production Issues

This section has information on how to debug issues that might occur in your CommCare HQ instance.

This is a firefighting guide to help troubleshoot various issues that might come up while running a CommCare HQ
Server.

Note: All Datadog links will be specific and private to Dimagi employees. If datadog releases a feature to share
dashboard configurations, we will happily share configurations in this repository.

9.3.1 Firefighting Guide

Table of Contents

• Firefighting Guide

– HQ Architecture and Machines

– High-level System Monitoring and Alerts

– Control machine log files

– In case of a reboot

– In case of network outage

– Service Information

– Switching to Maintenance Page

– Couch 2.0

– Nginx

– NFS & File serving / downloads

– Pgbouncer

– Postgres Troubleshooting

– Celery

– Elasticsearch

– Redis

– Pillows / Pillowtop / Change feed

188 Chapter 9. Reference Annexure



CommCareHQ Deployment

– Formplayer / Cloudcare / Webapps

– Full Drives / Out of Disk Space

– Network Connection Issues (please help expand)

– Tips and Tricks

– Some Short Write-ups and Examples

– Backups

– SMS Gateways

For a more user-friendly guide check out Cory’s brown bag on the topic.

HQ Architecture and Machines

9.3. Firefighting Production Issues 189

http://prezi.com/wedwm-dgqto7/firefighting-hq/
./hq_architecture.png


CommCareHQ Deployment

High-level System Monitoring and Alerts

HQ Vitals - Various graphs on datadog

Datadog Alerts) - these are also often reported on #hq-ops or #hq-ops-priority on slack

https://www.commcarehq.org/hq/admin/system/ - catchall system info, contains deploy history, pillowtop info, and a
bunch of other stuff

https://www.commcarehq.org/hq/admin/system/check_services - plaintext URL that checks the status of a bunch of
support services

Control machine log files

There are two log files on the control machine that might be useful to reference if you need to know what commands
were executed. These files are located in the /var/log/ directory and are:

• ansible.log: Shows the output of ansible commands.

• commands.log: Shows the commands that were run and by which user.

In case of a reboot

After reboot, whether or not it was deliberate

In case a machine has automatically rebooted or you needed to reboot a machine, you will need to run the after-reboot
protocol directly afterwards. You can specify a single server by IP address, a single server by its name in inventory.ini.
You will have to confirm to run, and then provide the vault password for your environment.

$ cchq <env> after-reboot [all|<group>|<server>]
Do you want to apply without running the check first? [y/N]y

You don’t always control the reboot process (sometimes our provider will expectedly or unexpectedly reboot a VM),
but if you do, here’s the process end to end:

# Before shutting down VMs
$ cchq <env> service commcare stop
$ cchq <env> ansible-playbook stop_servers.yml

# After restarting VMs
$ cchq <env> after-reboot all
$ cchq <env> django-manage check_services # ping various auxiliary services to make␣
→˓sure they're up
# if any services aren't running, you may have to manually start them:

$ # cchq <env> service postgres start
$ cchq <env> service commcare start # start app processes

190 Chapter 9. Reference Annexure

https://app.datadoghq.com/dashboard/g9s-pw6-tpg/hq-vitals?to_ts=1549314000000&is_auto=false&from_ts=1549227600000&live=true&tile_size=m&page=0
https://app.datadoghq.com/monitors/manage?q=status%3A(alert%20OR%20warn%20OR%20"no%20data"
https://www.commcarehq.org/hq/admin/system/
https://www.commcarehq.org/hq/admin/system/check_services


CommCareHQ Deployment

Applying file system check for every reboot

Checking the file system for errors is an important part of Linux system administration. It is a good troubleshooting
step to perform when encountering bad performance on read and write times, or file system errors.

This guide will walk you through the process on how to force fsck to perform a file system check on the next system
reboot or force file system check for any desired number of system reboots on root mount point.

1. View and modify PASS value in /etc/fstab

First, use the blkid command to figure out the UUID value of the file system you want to check.

$ blkid /dev/sda3

output might look like this:

/dev/sda3: UUID="c020d4d8-c104-4140-aafc-24f7f89f8629" BLOCK_SIZE="4096" TYPE="ext4"
PARTUUID="22ada8f4-5222-4049-b0fe-a3274516754d"

Then, grep for that UUID in the /etc/fstab file.

$ grep c020d4d8-c104-4140-aafc-24f7f89f8629 /etc/fstab

output:

UUID=c020d4d8-c104-4140-aafc-24f7f89f8629 / ext4 defaults 0 0

The last column that is a column 6, aka fsck PASS column is used by fsck to determine whether fsck should check
filesystem before it is mounted and in which order given partitions in /etc/fstab should be checked. Possible entries for
fstab PASS column are 0,1 and 2.

0 - disabled, that is do not check the filesystem.

1 - partition with this PASS value has a higher priority and is checked first. This value is usually set to root/partition.

2 - partitions with this PASS value will be checked last

change the value of last column to 1 and save exit

eg. UUID=c020d4d8-c104-4140-aafc-24f7f89f8629 / ext4 defaults 0 1

Note: the above setting will apply a filesystem check on the root mount /

2. Change “Maximum number of mounts”

To ensure that your file system is checked on the next reboot, we need to manipulate the filesystem’s “Maximum mount
count” parameter. The following tune2fs command will ensure that filesystem /dev/sdX is checked every time your
Linux system reboots. Please note that for this to happen the fsck’s PASS value in /etc/fstab must be set to a positive
integer as discussed above.

sudo tune2fs -c 1 /dev/sdX

Note: /dev/sdX device where / is mounted

9.3. Firefighting Production Issues 191



CommCareHQ Deployment

3. Change kernel parameter

To try to fix potential problems without getting any prompts, pass the -y option to fsck.
eg. sudo fsck -y /dev/sda2

This way, you say yes, try to fix all detected errors without being prompted every time. If no errors are
found, the output looks the same as without the -y option.

So to apply this during reboot, without prompt, you have to Change kernel parameter. fsck.mode=force
will force a file check.

Steps:
1. open /etc/default/grub
2. add the following parameters fsck.mode=force fsck.repair=yes

GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash fsck.mode=force fsck.repair=yes”

the new parameters added here are: fsck.mode=force fsck.repair=yes
caution: Make sure you don’t edit anything else, and that the edits you’ve made are correct, or else your
computer may fail to boot

3. update grub configuration
sudo update-grub

In case of network outage

If there has been a network outage in a cluster (e.g. firewall reboot), the following things should be checked to verify
they are working:

Check services

$ ./manage.py check_services
# or go to
https://[commcarehq.environment.path]/hq/admin/system/check_services

Check that change feeds are still processing

You can use this graph on datadog

Service Information

Restarting services: cchq <env> service <service_name> restart

Stopping services: cchq <env> service <service_name> stop

Service logs: cchq <env> service <service_name> logs

192 Chapter 9. Reference Annexure

https://app.datadoghq.com/dashboard/ewu-jyr-udt/change-feeds?to_ts=1549314000000&is_auto=false&live=true&from_ts=1549227600000&tile_size=m&page=0&fullscreen_widget=185100827


CommCareHQ Deployment

Datadog Dashboards

postgres/pgbouncer

redis

rabbitmq

pillow

celery/celerybeat

elasticsearch

kafka

Blob DB Dashboard

couch

formplayer

Switching to Maintenance Page

To switch to the Maintenance page, if you stop all web workers then the proxy will revert to “CommCare HQ is currently
undergoing maintenance. . . ”.

$ cchq <env> service webworker stop

To stop all supervisor processes use:

$ cchq <env> service commcare stop

Couch 2.0

Important note about CouchDB clusters. At Dimagi we run our CouchDB clusters with at least 3 nodes, and store
all data in triplicate. That means if one node goes down (or even two nodes!), there are no user-facing effects with
regards to data completeness so long as no traffic is being routed to the defective node or nodes. However, we have
seen situations where internal replication failed to copy some documents to all nodes, causing views to intermittently
return incorrect results when those documents were queried.

Thus in most cases, the correct approach is to stop routing traffic to the defective node, to stop it, and then to solve the
issue with some better breathing room.

(If you do not store your data in duplicate or triplicate, than this does not apply to your cluster, and a single node being
down means the database is either down or serving incomplete data.)

Couch node is down

If a couch node is down, the couch disk might be full. In that case, see Couch node data disk is full below. Otherwise,
it could mean that the node is slow to respond, erroring frequently, or that the couch process or VM itself in a stopped
state.

Monitors are setup to ping the proxy instead of couch instance directly, so the error will appear as “instance:http://:raw-
html-m2r:`<proxy ip>`/node/couchdb:raw-html-m2r:`<couch node ip>`/”.

1. log into couch node ip

9.3. Firefighting Production Issues 193

https://app.datadoghq.com/dash/263336/postgres---overview
https://app.datadoghq.com/dash/290868/redis-timeboard
https://app.datadoghq.com/screen/487480/rabbitmq---overview
https://app.datadoghq.com/dash/256236/change-feeds-pillows
https://app.datadoghq.com/dash/141098/celery-overview
https://app.datadoghq.com/screen/127236/es-overview
https://app.datadoghq.com/screen/516865/kafka---overview-cloned
https://app.datadoghq.com/dashboard/753-35q-fwt/blob-db-dashboard
https://app.datadoghq.com/screen/177642/couchdb-dashboard
https://app.datadoghq.com/dashboard/dcs-kte-q8e/formplayer-health


CommCareHQ Deployment

2. service couchdb2 status

3. If it’s not running start it and begin looking through log files (on the proxy, couch’s files, maybe kernel or syslog
files as well) to see if you can determine the cause of downtime

4. If it is running it could just be very slow at responding.
a. Use fauxton to see if any tasks are running that could cause couch to become unresponsive (like large

indexing tasks)

b. It could also have ballooned (ICDS) which is out of our control

5. If it’s unresponsive and it’s out of our control to fix it at the time, go to the proxy machine and comment out the
fault node from the nginx config. This will stop sending requests to that server, but it will continue to replicate.
When the slowness is over you can uncomment this line and begin proxying reads to it again

Couch node data disk is high

Your best bet if the disk is around 80% is to compact large dbs. If this happens regularly, you’re probably better off
adding more disk.

Log onto a machine that has access to couchdb:

cchq ${env} ssh django_manage

and then post to the _compact endpoints of the larger dbs, e.g.:

curl -X POST http://${couch_proxy}:25984/commcarehq__auditcare/_compact -v -u ${couch_
→˓username} -H 'Content-Type: application/json' -d'{}'
curl -X POST http://${couch_proxy}:25984/commcarehq__receiverwrapper/_compact -v -u $
→˓{couch_username} -H 'Content-Type: application/json' -d'{}'

where ${couch_proxy} is the address of the couchdb2_proxy machine (cchq ${env} lookup couchdb2_proxy)
and ${couch_username} is the value of the COUCH_USERNAME secret (cchq ${env} secrets view
COUCH_USERNAME). You will also need to enter the value of the COUCH_PASSWORD secret (cchq ${env} secrets
view COUCH_PASSWORD).

Couch node data disk is full

If there is more than one couch node, and the other nodes are healthy, the fastest way to get to a calmer place is to pull
the node with the full disk out of the proxy so requests stop getting routed to it. First

• Check that the other nodes do not have a full disk

To stop routing data to the node:

1. Comment it out under [couchdb2] in the inventory.ini

2. Run .. code-block:: bash

cchq <env> ansible-playbook deploy_couchdb2.yml –tags=proxy

3. Put the node in maintenance mode.

4. Verify internal replication is up to date.

5. Stop its couchdb process .. code-block:: bash

cchq production run-shell-command <node-name> ‘monit stop couchdb2’ -b

194 Chapter 9. Reference Annexure

https://docs.couchdb.org/en/stable/cluster/sharding.html#set-the-target-node-to-true-maintenance-mode
https://docs.couchdb.org/en/stable/cluster/sharding.html#monitor-internal-replication-to-ensure-up-to-date-shard-s


CommCareHQ Deployment

The steps for this will differ depending on your hosting situation.

Link to internal Dimagi docs on How to modify volume size on AWS.

Once the disk is resized, couchdb should start normally. You may want to immediately investigate how to compact
more aggressively to avoid the situation again, or to increase disk on the other nodes as well, since what happens on
one is likely to happen on others sooner rather than later barring any other changes.

Once the node has enough disk

1. Start the node (or ensure that it’s already started)

2. Force internal replication.

3. Verify internal replication is up to date.

4. Clear node maintenance mode.

5. Reset your inventory.ini to the way it was (i.e. with the node present under the [couchdb2] group)

6. Run the same command again to now route a portion of traffic back to the node again: .. code-block:: bash

cchq <env> ansible-playbook deploy_couchdb2.yml –tags=proxy

Compacting a shard

If a couch node is coming close to running out of space, it may not have enough space to compact the full db. You can
start a compaction of one shard of a database using the following:

curl "<couch ip>:15986/shards%2F<shard range i.e. 20000000-3fffffff>%2F<database>.<The␣
→˓timestamp on the files of the database>/_compact" -X POST -H "Content-Type:␣
→˓application/json" --user <couch user name>

It’s important to use port 15986. This is the couch node endpoint instead of the cluster. The only way to find the
timstamp is to go into /opt/data/couchdb2/shards and look for the filename of the database you want to compact

If it’s a global database (like _global_changes), then you may need to compact the entire database at once

curl "<couch ip>:15984/_global_changes/_compact" -X POST -H "Content-Type: application/
→˓json" --user <couch user name>

Documents are intermittently missing from views

This can happen if internal cluster replication fails. The precise causes are unknown at time of writing, but it has been
observed after maintenance was performed on the cluster where at least one node was down for a long time or possibly
when a node was stopped too soon after another node was brought back online after being stopped.

It is recommended to follow the instructions above (use maintenance mode and verify internal replication is up to date)
when performing cluster maintenance to avoid this situation.

We have developed a few tools to find and repair documents that are missing on some nodes:

# Get cluster info, including document counts per shard. Large persistent
# discrepancies in document counts may indicate problems with internal
# replication.
commcare-cloud <env> couchdb-cluster-info --shard-counts [--database=...]

# Count missing forms in a given date range (slow and non-authoritative). Run
(continues on next page)

9.3. Firefighting Production Issues 195

https://confluence.dimagi.com/display/internal/How+to+modify+volume+size+on+AWS
https://docs.couchdb.org/en/stable/cluster/sharding.html#forcing-synchronization-of-the-shard-s
https://docs.couchdb.org/en/stable/cluster/sharding.html#monitor-internal-replication-to-ensure-up-to-date-shard-s
https://docs.couchdb.org/en/stable/cluster/sharding.html#clear-the-target-node-s-maintenance-mode


CommCareHQ Deployment

(continued from previous page)

# against production cluster. Increase --min-tries value to increase confidence
# of finding all missing ids.
./manage.py corrupt_couch count-missing forms --domain=... --range=2020-11-15..2020-11-
→˓18 --min-tries=40

# Exhaustively and efficiently find missing documents for an (optional) range of
# ids by running against stand-alone (non-clustered) couch nodes that have
# snapshot copies of the data from a corrupt cluster. Multiple instances of this
# command can be run simultaneously with different ranges.
./manage.py corrupt_couch_nodes NODE1_IP:PORT,NODE2_IP:PORT,NODE3_IP:PORT forms --
→˓range=1fffffff..3fffffff > ~/missing-forms-1fffffff..3fffffff.txt

# Repair missing documents found with previous command
./manage.py corrupt_couch repair forms --min-tries=40 --missing ~/missing-forms-1fffffff.
→˓.3fffffff.txt

# See also
commcare-cloud <env> couchdb-cluster-info --help
./manage.py corrupt_couch --help
./manage.py corrupt_couch_nodes --help

The process of setting up stand-alone nodes for corrupt_couch_nodes will differ depending on the hosting environ-
ment and availability of snapshots/ backups. General steps once nodes are setup with snapshots of production data:

• Use a unique Erlang cookie on each node (set in /opt/couchdb/etc/vm.args). Do this before starting the
couchdb service.

• Remove all nodes from the cluster except local node. The couch_node_standalone_fix.py script can be used to
do this.

DefaultChangeFeedPillow is millions of changes behind

Most of our change feed processors (pillows) read from Kafka, but a small number of them serve to copy changes from
the CouchDB _changes feeds into Kafka, the main such pillow being DefaultChangeFeedPillow. These pillows
store as a checkpoint a CouchDB “seq”, a long string that references a place in the _changes feed. While these seqs
have the illusion of durability (that is, if couch gives you one, then couch will remember it when you pass it back) there
are actually a number of situations in which CouchDB no longer recognizes a seq that it previously gave you. Two
known examples of this are:

• If you have migrated to a different CouchDB instance using replication, it will not
honor a seq that the old instance gave you.

• If you follow the proper steps for draining a node of shards (data) and then remove it,
some seqs may be lost.

When couch receives a seq it doesn’t recognize, it doesn’t return an error. Instead it gives you changes starting at the
beginning of time. This results in what we sometimes call a “rewind”, when a couch change feed processor (pillow)
suddenly becomes millions of changes behind.

If you encounter a pillow rewind, you can fix it by

• figuring out when the rewind happened,

• finding a recent CouchDB change seq from before the rewind happened, and

• resetting the pillow checkpoint to this “good” seq

196 Chapter 9. Reference Annexure

https://gist.github.com/snopoke/f5c81497f6cbf3937dce2734e2b354a5


CommCareHQ Deployment

Figure out when the rewind happened

Look at https://app.datadoghq.com/dashboard/ewu-jyr-udt/change-feeds-pillows for the right environment, and look
for a huge jump in needs_processed for DefaultChangeFeedPillow.

Find a recent seq

Run

curl $couch/commcarehq/_changes?descending=true | grep '"1-"'

This will start at the latest change and go backwards, filtering for “1-” because what we want to find is a doc that has
only been touched once (so we can easily reason with timestamps in the doc). Start looking up the docs in couch by
doc id, until you find a doc with an early enough timestamp (like a form with received_on). You’re looking for a
recent timestamp that happened at a time before the rewind happened.

Reset the pillow checkpoint to this “good” seq

Run

cchq <env> django-manage shell --tmux

to get a live production shell on the django_manage machine, and manually change the checkpoint using something
like the following lines (using the seq you found above instead, of course):

# in django shell
seq = '131585621-g1AAAAKzeJzLYWBg4MhgTmEQTc4vTc5ISXIwNNAzMjDSMzHQMzQ2zQFKMyUyJMn___8_
→˓K4M5ieFXGmMuUIw9JdkkxdjEMoVBBFOfqTkuA40MwAYmKQDJJHu4mb_
→˓cwWamJZumpiaa49JKyFAHkKHxcEP31oMNNTJMSbIwSCbX0ASQofUwQ3_-
→˓uQI21MwkKcnYxAyfoVjCxdIcbGYeC5BkaABSQGPnQxw7yQZibpJpooGFGQ7dxBi7AGLsfrCxfxKPg401MDI2MzClxNgDEGPvQ1zrWwA2NsnCyCItLYkCYx9AjIUE7p8qSDIAutXQwMwAV5LMAgCrhbmz
→˓'
from pillowtop.utils import get_pillow_by_name
p = get_pillow_by_name('DefaultChangeFeedPillow')
p.checkpoint.update_to(seq)

Nginx

Occasionally a staging deploy fails because during a previous deploy, there was an issue uncommenting and re-
commenting some lines in the nginx conf.

When this happens, deploy will fail saying

nginx: configuration file /etc/nginx/nginx.conf test failed To fix, log into the proxy and su as root. Open the config and
you’ll see something like this

/etc/nginx/sites-enabled/staging_commcare
#
# Ansible managed, do not edit directly
#

upstream staging_commcare {
(continues on next page)

9.3. Firefighting Production Issues 197

https://app.datadoghq.com/dashboard/ewu-jyr-udt/change-feeds-pillows


CommCareHQ Deployment

(continued from previous page)

zone staging_commcare 64k;

least_conn;

#server hqdjango0-staging.internal-va.commcarehq.org:9010;
#server hqdjango1-staging.internal-va.commcarehq.org:9010;
}

Ignore the top warning. Uncomment out the servers. Retsart nginx. Run restart_services.

NFS & File serving / downloads

For downloading files we let nginx serve the file instead of Django. To do this Django saves the data to a shared NFS
drive which is accessible to the proxy server and then returns a response using the XSendfile/X-Accel-Redirect header
which tells nginx to look for the file and serve it to the client directly.

The NFS drive is hosted by the DB machine e.g. hqdb0 and is located at /opt/shared_data (see ansible config for exact
name). On all the client machines it is located at /mnt/shared_data (again see ansible config for exact name),

Troubleshooting

It is possible that the mounted NFS folder on the client machines becomes disconnected from the host in which case
you’ll see errors like “Webpage not available”

To verify that this is the issue log into the proxy machine and check if there are any files in the shared data directories.
If there are folders but no files then that is a good indication that the NFS connections has been lost. To re-establish the
connection you should unmount and re-mount the drive:

$ su
$ umount -l /mnt/shared_data
$ mount /mnt/shared_data
# verify that it is mounted and that there are files in the subfolders

It may happen, specially if the client crashes or has kernel oops, that a connection gets in a state where it cannot be
broken nor re-established. This is how we force re-connection in a webworker.

1. Verify NFS is actually stuck

1. df doesn’t work, it hangs. Same goes for lsof.

2. umount results in umount.nfs: /mnt/shared_icds: device is busy

2. top all app processes (gunicorn, etc) and datadog

1. sudo supervisorctl stop all

2. sudo service datadog-agent stop

3. Force umount

1. sudo umount -f /mnt/shared_icds

• if that doesn’t work make sure to kill all app processes in e.g. for webworkers ps aux | grep
gunicor[n]

4. Re-mount

1. sudo mount /mnt/shared_icds

198 Chapter 9. Reference Annexure



CommCareHQ Deployment

2. Verify NFS mount works: df

5. Start supervisor and app processes

1. sudo service supervisord start

2. sudo supervisorctl start all

3. sudo service datadog-agent start

If none of the above works check that nfsd is running on the shared_dir_host.

$ ps aux | grep nfsd
$ service nfs-kernel-server status

Pgbouncer

We use pgbouncer as a connection pooler for PostgreSQL.

It is configured to use the “transaction” pool mode which means that each server connection is assigned to client only
during a transaction. When PgBouncer notices that transaction is over, the server will be put back into pool. This does
have some limitations in terms of what the client can do in the connection e.g. no prepared statements. The full list of
supported / unsupported operations is found on the pgboucer wiki.

Get a pgbouncer shell

$ psql -U {commcarehq-user} -p 6432 pgbouncer

Check connection status

pgbouncer=# show pools;
database | user | cl_active | cl_waiting | sv_active | sv_idle | sv_used |␣

→˓sv_tested | sv_login | maxwait
------------+----------------+-----------+------------+-----------+---------+---------+--
→˓---------+----------+---------
commcarehq | ************** | 29 | 0 | 29 | 10 | 8 | ␣
→˓ 0 | 0 | 0
pgbouncer | pgbouncer | 1 | 0 | 0 | 0 | 0 | ␣
→˓ 0 | 0 | 0

pgbouncer=# show clients;
type | user | database | state | addr | port | local_addr |␣
→˓local_port | connect_time | request_time | ptr | link
------+----------------+------------+--------+----------------+-------+---------------+--
→˓----------+---------------------+---------------------+-----------+-----------
C | ************** | commcarehq | active | 10.209.128.58 | 39741 | 10.176.193.42 | ␣
→˓ 6432 | 2015-05-21 12:48:57 | 2015-05-21 13:44:07 | 0x1a59cd0 | 0x1a556c0
C | ************** | commcarehq | active | 10.209.128.58 | 40606 | 10.176.193.42 | ␣
→˓ 6432 | 2015-05-21 13:04:34 | 2015-05-21 13:04:34 | 0x1a668d0 | 0x1a6f590
C | ************** | commcarehq | active | 10.177.130.82 | 45471 | 10.176.193.42 | ␣
→˓ 6432 | 2015-05-21 13:17:04 | 2015-05-21 13:44:21 | 0x1a32038 | 0x1a8b060
C | ************** | commcarehq | active | 10.177.130.82 | 45614 | 10.176.193.42 | ␣

(continues on next page)

9.3. Firefighting Production Issues 199



CommCareHQ Deployment

(continued from previous page)

→˓ 6432 | 2015-05-21 13:17:23 | 2015-05-21 13:17:23 | 0x1a645a8 | 0x1a567a0
C | ************** | commcarehq | active | 10.177.130.82 | 45680 | 10.176.193.42 | ␣
→˓ 6432 | 2015-05-21 13:17:31 | 2015-05-21 13:44:21 | 0x1a6a110 | 0x1a8a250

The columns in the “show pools” output have the following meanings:

cl_active: Connections from clients which are associated with a PostgreSQL connection cl_waiting: Connections from
clients that are waiting for a PostgreSQL connection to service them sv_active: Connections to PostgreSQL that are in
use by a client connection sv_idle: Connections to PostgreSQL that are idle, ready to service a new client connection
sv_used: PostgreSQL connections recently released from a client session. These will end up in sv_idle if they need to
once pgbouncer has run a check query against them to ensure they are in a good state. max_wait: The length of time
the oldest waiting client has been waiting for a connection

If you want to monitor the connections over a short period of time you can run this command (while logged in as the
cchq user): watch -n 2 pgb_topYou can also access the pgbouncer console easily with this command (while logged
in as the cchq user): pgb

Postgres Troubleshooting

Common restart problems

If you see something like the following line in the logs:

could not open file “”/etc/ssl/certs/ssl-cert-snakeoil.pem””: Permission denied You can run the following commands
to fix it

cd /opt/data/postgresql/9.4/main/
chown postgres:postgres server.crt
chown postgres:postgres server.key

More information on this error is available here.

Dealing with too many open connections

Sometimes Postgres gets into a state where it has too many open connections. In this state HQ gets very slow and
you will see many 500 errors of the form: “OperationalError : FATAL: remaining connection slots are reserved for
non-replication superuser connections”

In this case you can check what machines are hogging connections by logging into postgres and using the following
steps:

$ su
$ sudo -u postgres psql commcarehq

select client_addr, datname as database, count(*) as total, sum(case when query = '<IDLE>
→˓' then 1 else 0 end) as idle from pg_stat_activity group by client_addr, datname;

This will print something like the following:

client_addr | database | total | idle
----------------+------------+-------+------

| commcarehq | 4 | 2
(continues on next page)

200 Chapter 9. Reference Annexure

https://wiki.postgresql.org/wiki/May_2015_Fsync_Permissions_Bug


CommCareHQ Deployment

(continued from previous page)

10.209.128.58 | commcarehq | 9 | 5
10.177.130.82 | commcarehq | 7 | 7
10.208.22.37 | commcarehq | 6 | 5
10.223.145.60 | commcarehq | 1 | 0
10.208.148.179 | commcarehq | 3 | 3
10.176.132.63 | commcarehq | 24 | 23
10.210.67.214 | commcarehq | 3 | 2

When using pgbouncer the following command can be used to list clients:

$ psql -h localhost -p 6432 -U $USERNAME pgbouncer -c "show clients" | cut -d'|' -f 5 |␣
→˓tail -n +4 | sort | uniq -c

10 10.104.103.101
5 10.104.103.102
2 10.104.103.104

To see a list of queries (ordered by the long running ones first) you can do something like the following. This can also
be exported to csv for further analysis.

SELECT pid, datname, query_start, now() - query_start as duration, state, query as␣
→˓current_or_last_query FROM pg_stat_activity WHERE state = 'active' OR query_start >␣
→˓now() - interval '1 min' ORDER BY state, query_start;

This can also be exported to csv for further analysis.

Copy (SELECT state, query_start, client_addr, query FROM pg_stat_activity ORDER BY query_
→˓start) TO '/tmp/pg_queries.csv' WITH CSV;

Use iotop to see what processes are dominating the IO and get their process IDs.

SELECT pid, query_start, now() - query_start as duration, client_addr, query FROM pg_
→˓stat_activity WHERE procpid = {pid} ORDER BY query_start;

DO NOT EVER ``kill -9`` any PostgreSQL processes. It can bring the DB process down.

This shouldn’t be necessary now that we’ve switched to using pgbouncer (but it still is currently!).

After checking open connections you can kill connections by IP address or status. The following command will kill
all open IDLE connections from localhost (where pgbouncer connections route from) and is a good way to reduce the
load:

Kill all idle connections

SELECT pg_terminate_backend(procpid) FROM pg_stat_activity WHERE client_addr = '127.0.0.1
→˓' AND query = '<IDLE>';

9.3. Firefighting Production Issues 201



CommCareHQ Deployment

Kill a single query

SELECT pg_terminate_backend({procpid})

Replication Delay

https://www.enterprisedb.com/blog/monitoring-approach-streaming-replication-hot-standby-postgresql-93

• Check if wal receiver and sender process are running respectively on standby and master using ps aux | grep
receiver and ps aux | grep sender

• Alternatively use SQL select * from pg_stat_replication on either master or standby

• If WAL processes are not running, check logs, address any issues and may need to reload/restart postgres

• Check logs for anything suspicious

• Checking replication delay

– Use datadog

– Run queries on nodes:

--- on master
select
slot_name,
client_addr,
state,
pg_size_pretty(pg_xlog_location_diff(pg_current_xlog_location(), sent_location))␣

→˓sending_lag,
pg_size_pretty(pg_xlog_location_diff(sent_location, flush_location)) receiving_lag,
pg_size_pretty(pg_xlog_location_diff(flush_location, replay_location)) replaying_lag,
pg_size_pretty(pg_xlog_location_diff(pg_current_xlog_location(), replay_location))␣

→˓total_lag
from pg_replication_slots s
left join pg_stat_replication r on s.active_pid = r.pid
where s.restart_lsn is not null;

-- On standby

SELECT now() - pg_last_xact_replay_timestamp() AS replication_delay;

In some cases it may be necessary to restart the standby node.

PostgreSQL disk usage

Use the following query to find disc usage by table where child tables are added to the usage of the parent.

SELECT *, pg_size_pretty(total_bytes) AS total
, pg_size_pretty(index_bytes) AS INDEX
, pg_size_pretty(toast_bytes) AS toast
, pg_size_pretty(table_bytes) AS TABLE

FROM (
SELECT *, total_bytes-index_bytes-COALESCE(toast_bytes,0) AS table_bytes FROM (

(continues on next page)

202 Chapter 9. Reference Annexure

https://www.enterprisedb.com/blog/monitoring-approach-streaming-replication-hot-standby-postgresql-93
https://app.datadoghq.com/dash/263336/postgres---overview?live=true&page=0&is_auto=false&from_ts=1511770050831&to_ts=1511773650831&tile_size=m&tpl_var_env=*&fullscreen=253462140&tpl_var_host=*


CommCareHQ Deployment

(continued from previous page)

SELECT c.oid,nspname AS table_schema, relname AS TABLE_NAME
, c.reltuples AS row_estimate
, pg_total_relation_size(c.oid) AS total_bytes
, pg_indexes_size(c.oid) AS index_bytes
, pg_total_relation_size(reltoastrelid) AS toast_bytes

FROM pg_class c
LEFT JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE relkind = 'r'

) a
) a order by total_bytes desc;

SELECT
main_table,
row_estimate,
pg_size_pretty(total_size) as total,
pg_size_pretty(index_bytes) as index,
pg_size_pretty(toast_bytes) as toast

FROM (
SELECT

CASE WHEN HC.inhrelid IS NOT NULL THEN CP.relname
ELSE C.relname END as main_table,

sum(C.reltuples) AS row_estimate,
sum(pg_total_relation_size(C.oid)) AS "total_size",
sum(pg_indexes_size(C.oid)) AS index_bytes,
sum(pg_total_relation_size(C.reltoastrelid)) AS toast_bytes

FROM pg_class C
LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)
LEFT JOIN pg_inherits HC ON (HC.inhrelid = C.oid)
LEFT JOIN pg_class CP ON (HC.inhparent = CP.oid)
WHERE nspname NOT IN ('pg_catalog', 'information_schema')

AND C.relkind <> 'i' AND C.relkind <> 'S' AND C.relkind <> 'v'
AND nspname !~ '^pg_toast'

GROUP BY main_table
ORDER BY total_size DESC
) as a;

SELECT
CASE WHEN HC.inhrelid IS NOT NULL THEN CP.relname

ELSE C.relname END as main_table,
sum(seq_scan) as seq_scan,
sum(seq_tup_read) as seq_tup_read,
sum(idx_scan) as idx_scan,
sum(idx_tup_fetch) as idx_tup_fetch,
sum(n_tup_ins) as n_tup_ins,
sum(n_tup_upd) as n_tup_upd,
sum(n_tup_del) as n_tup_del,
sum(n_tup_hot_upd) as n_tup_hot_upd,
sum(n_live_tup) as n_live_tup,
sum(n_dead_tup) as n_dead_tup

FROM pg_class C
LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace)

(continues on next page)

9.3. Firefighting Production Issues 203



CommCareHQ Deployment

(continued from previous page)

LEFT JOIN pg_inherits HC ON (HC.inhrelid = C.oid)
LEFT JOIN pg_class CP ON (HC.inhparent = CP.oid)
LEFT JOIN pg_stat_user_tables t ON (C.oid = t.relid)
WHERE nspname NOT IN ('pg_catalog', 'information_schema')

AND C.relkind <> 'i' AND C.relkind <> 'S' AND C.relkind <> 'v'
AND nspname !~ '^pg_toast'

GROUP BY main_table
ORDER BY n_tup_ins DESC;

In Case PostgreSQL fails with No space left on device error message and in order to free up space needed to
restart the PostgreSQL then take the following steps

• Stop the Pgbouncer

• There is a dummy file of 1GB placed in encrypted root path /opt/data/emerg_delete.dummy which can be
deleted.

• It will give you enough space to restart Database. Reclaim the disk space.

• Start the Pgbouncer

• Once the issue has been resolved you should re-add the dummy file for future use: .. code-block:

dd if=/dev/zero of=/opt/data/emerg_delete.dummy count=1024 bs=1048576

At all the times, PostgreSQL maintains a write-ahead log (WAL) in the pg_xlog/ for version <10 and in pg_wal/ for
version >=10 subdirectory of the cluster’s data directory. The log records for every change made to the database’s data
files. These log messages exists primarily for crash-safety purposes.

It contains the main binary transaction log data or binary log files. If you are planning for replication or Point in time
Recovery, we can use this transaction log files.

We cannot delete this file. Otherwise, it causes a database corruption. The size of this folder would be greater than
actual data so If you are dealing with massive database, 99% chance to face disk space related issues especially for the
pg_xlog or pg_wal folder.

There could be multiple reason for folder getting filled up.

• Archive Command is failing.

• Replication delay is high.

• Configuration params on how much WAL logs to keep.

If you are able to fix the above related , then logs from this folder will be cleared on next checkpoints.

If it’s absolutely necessary to delete the logs from this folder. Use following commands to do it. (Do not delete logs
from this folder manually)

# you can run this to get the latest WAL log
/usr/lib/postgresql/<postgres-version>/bin/pg_controldata /opt/data/postgresql/<postgres-
→˓version>/main

Deleting
/usr/lib/postgresql/<postgres-version>/bin/pg_archivecleanup -d /opt/data/postgresql/
→˓<postgres-version>/main/<pg_wal|| pg_xlog> <latest WAL log filename>

204 Chapter 9. Reference Annexure



CommCareHQ Deployment

Celery

Check out Celery Firefighting Guide.

Monitoring

Sometimes it’s helpful to check “Flower”, a UI for celery monitoring http://hqcelery1.internal-va.commcarehq.org:
5555/ (you have to be VPN’d in).

You can also check the current celery queue backlogs on datadog. Any spikes indicate a backup, which may result in
things like delays in sending scheduled reports or exports. If there’s a problem, there should also be an alert here and
on #hq-ops on Slack.

Also, see the bottom of this page for some useful firefighting commands.

Celery consuming all the disk space

On occasion, the celery_taskmeta table grows out of control and takes up all the disk space on the database machine
very quickly. Often one our disk space monitors will trip when this happens. To diagnose and ensure that the it is indeed
the celery_taskmeta table that has grown too large, you can run the above Postgres command to check disk usage by
table.

To fix the issue, you can then run these commands in a psql shell after stopping the Celery workers:

# Ensure Celery workers have been stopped
truncate celery_taskmeta;
vacuum full celery_taskmeta;
# Start Celery workers again

Elasticsearch

Check Cluster Health

It’s possible to just ping (a) server(s):

$ curl -XGET 'http://es[0-3].internal-icds.commcarehq.org:9200/'
{
"status" : 200,
"name" : "es0",
"cluster_name" : "prodhqes-1.x",
"version" : {
"number" : "1.7.3",
"build_hash" : "05d4530971ef0ea46d0f4fa6ee64dbc8df659682",
"build_timestamp" : "2015-10-15T09:14:17Z",
"build_snapshot" : false,
"lucene_version" : "4.10.4"

},
"tagline" : "You Know, for Search"

}

Or check for health:

9.3. Firefighting Production Issues 205

http://hqcelery1.internal-va.commcarehq.org:5555/
http://hqcelery1.internal-va.commcarehq.org:5555/


CommCareHQ Deployment

$ curl -XGET 'http://es0.internal-icds.commcarehq.org:9200/_cluster/health?pretty=true'
{
"cluster_name" : "prodhqes-1.x",
"status" : "green",
"timed_out" : false,
"number_of_nodes" : 4,
"number_of_data_nodes" : 4,
"active_primary_shards" : 515,
"active_shards" : 515,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 0,
"delayed_unassigned_shards" : 0,
"number_of_pending_tasks" : 0,
"number_of_in_flight_fetch" : 0

}

Data missing on ES but exist in the primary DB (CouchDB / PostgreSQL)

We’ve had issues in the past where domains have had some of their data missing from ES. This might correlate with a
recent change to ES indices, ES-related upgrade work, or ES performance issues. All of these instabilities can cause
strange flaky behavior in indexing data, especially in large projects.

First, you need to identify that this issue is not ongoing and widespread.

1) visit the affected domain’s Submit History or Case List report to verify that recent submissions are still being indexed
on ES (if they are in the report, they are in ES) 2) check the modification date of the affected data and then check the
reports around that date and surrounding dates. 3) spot check another domain with a lot of consistent submissions to
see if there are any recent and past issues surrounding the reported affected date(s).

If you don’t see any obvious issues, it’s likely a strange data-flakiness issue. This can be resolved by running the
following management commands (run in a tmux since they may take a long time to complete):

pthon manage.py stale_data_in_es [form/case] --domain <domain> [--start=YYYY-MM-DD] [--
→˓end=YYYY-MM-DD] > stale_data.tsv
pthon manage.py republish_doc_changes stale_data.tsv

You can also do a quick analysis of the output data to find potentially problematic dates:

cat state_data.tsv | cut -f 6 | tail -n +2 | cut -d' ' -f 1 | uniq -c

2 2020-10-26
172 2020-11-03
14 2020-11-04

If you DO see obvious issues, it’s time to start digging for problematic PRs or checking performance monitoring graphs.

206 Chapter 9. Reference Annexure



CommCareHQ Deployment

Low disk space free

“[INFO ][cluster.routing.allocation.decider] [hqes0] low disk watermark [85%] exceeded on . . . replicas will not be
assigned to this node”

is in the logs, then ES is running out of disk space. If there are old, unused indices, you can delete them to free up disk
space.

$ ./manage.py prune_elastic_indices --delete
Here are the indices that will be deleted:
hqapps_2016-07-08_1445
hqusers_2016-02-16_1402
report_xforms_20160707_2322
xforms_2016-06-09

Hopefully there are stale indices to delete, otherwise you’ll need to investigate other options, like increasing disk size
or adding a node to the cluster. Be sure to check the disk usage after the deletions have completed.

Request timeouts

“ESError: ConnectionTimeout caused by - ReadTimeoutError(HTTPConnectionPool(host=’hqes0.internal-
va.commcarehq.org’, port=9200): Read timed out. (read timeout=10))”

This could be caused by a number of things but a good process to follow is to check the ES dashboard on Datadog and
the slow logs on the ES machines:

# folder + filename may not be exact
$ tail -f /opt/data/elasticsearch-1.7.1/logs/prodhqes-1.x_index_search_slowlog.log

Unassigned shards

Currently on ICDS (maybe on prod/india) shard allocation is disabled. In case a node goes down all the shards that
were on the node get unassigned. Do not turn on automatic shard allocation immediately since that might cause lot
of unexpected shards to move around. Instead follow below instructions (the last point is very important for large ES
clusters)

• Check which nodes are down and restart them.

• Once all nodes are up, all the primary nodes should automatically get assigned.

– Shard assignment can be checked via Elasticsearch shards API or the shards graph on Elasticsearch datadog
dashboard

• If any primaries are not allocated. Use rereoute API (official docs)

– Reroute according to existing shard allocation

– The rerouting of unassigned primary shards will cause data loss (w.r.t es_2.4.6). :raw-html-m2r:`<br>`
:warning: The :raw-html-m2r:`<b>allow_primary</b>` parameter will force a new empty primary shard
to be allocated without any data. If a node which has a copy of the original shard (including data) rejoins
the cluster later on, that data will be deleted: the old shard copy will be replaced by the new live shard copy.

– Example reroute command to allocate replica shard

curl -XPOST 'http://<es_url>/_cluster/reroute' -d ' {"commands" :[{"allocate": {
→˓"shard": 0, "node": "es34", "index": "xforms_2020-02-20"}}]}'

9.3. Firefighting Production Issues 207

https://app.datadoghq.com/screen/127236/es-overview
https://www.elastic.co/guide/en/elasticsearch/reference/current/cat-shards.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.4/cluster-reroute.html


CommCareHQ Deployment

• Replicas won’t get auto assigned. To assign replicas, auto shard allocation needs to be enabled

– Make sure no primaries are unassigned

– Turn on auto shard allocation using .. code-block:

curl 'http://<es_url>/_cluster/settings/' -X PUT --data '{"transient":{
→˓"cluster.routing.allocation.enable":"all"}}'

– Wait for replicas to get assigned.

• Finally remember to turn off auto shard allocation using .. code-block:

curl 'http://<es_url>/_cluster/settings/' -X PUT --data '{"transient":{"cluster.
→˓routing.allocation.enable":"none"}}'

curl -XPUT '<es url/ip>:9200/_cluster/settings' -d '{ "transient":
{ "cluster.routing.allocation.enable" : "all"
}

}'
# wait for shards to be allocated
./scripts/elasticsearch-administer.py <es url> shard_status # all shards should say␣
→˓STARTED
curl -XPUT '<es url/ip>:9200/_cluster/settings' -d '{ "transient":

{ "cluster.routing.allocation.enable" : "none"
}

}'
./manage.py ptop_reindexer_v2 <index that had the unassigned shards> # run this in a␣
→˓tmux/screen session as it will likely take a while
./scripts/elasticsearch-administer.py <es url> shard_status # the shards for indexes␣
→˓that had unassigned shards should have around the same number of docs

Make sure to run the management command in the most recent release directory (may not be current if this failed before
the entire deploy went through)

Redis

Understanding the Top 5 Redis Performance Metrics

Selectively flushing keys

Sometimes in order for a fix to propagate you’ll need to flush the cache for certain keys. You can use this script to
selectively flush keys by globbing.

redis-cli
127.0.0.1:6379> EVAL "local keys = redis.call('keys', ARGV[1]) \n for i=1,#keys,5000 do \
→˓n redis.call('del', unpack(keys, i, math.min(i+4999, #keys))) \n end \n return keys" 0␣
→˓unique-cache-key*

A lot of times Redis will prefix the cache key with something like :1: so you’ll often need to do unique-cache-key

208 Chapter 9. Reference Annexure

https://www.datadoghq.com/pdf/Understanding-the-Top-5-Redis-Performance-Metrics.pdf


CommCareHQ Deployment

Disk full / filling rapidly

We have seen a situation where the redis disk fills up with files of the pattern /opt/data/redis/temp-rewriteaof-*.aof. This
happens when redis maxmemory is configured to be too high a proportion of the total memory (although the connection
is unclear to the author, Danny). This blog http://oldblog.antirez.com/post/redis-persistence-demystified.html/ explains
AOF rewrite files. The solution is to (1) lower maxmemory and (2) delete the temp files.

root@redis0:/opt/data/redis# cd /opt/data/redis/
root@redis0:/opt/data/redis# redis-cli
127.0.0.1:6379> CONFIG SET maxmemory 4gb
OK
(1.06s)
root@redis0:/opt/data/redis# rm temp-rewriteaof-\*.aof

We use the default AOF auto-rewrite configuration, which is to rewrite the AOF (on-disk replica of in-memory redis
data) whenever it doubles in size. Thus disk usage will sawtooth between X and 3X where X is the size of the AOL after
rewrite: X right rewrite, 2X when rewrite is triggered, and 3X when the 2X-sized file has been written to a 1X-sized
file, but the 2X-sized file has not yet been deleted, followed finally again by X after rewrite is finalized and the old file
is deleted.

Since the post-rewrite AOF will only ever contain as much data as is contained in redis memory, and the amount of
data contained in redis memory has an upper bound of the maxmemory setting, you should make sure that your disk
is at least 3 * maxmemory + whatever the size of the OS install is. Since disk is fairly cheap, give it a comfortable
overhead for log files etc.

Checking redis after restart

Redis takes some time to read the AOF back into memory upon restart/startup. To check if it’s up, you can run the
following:

$ cchq <env> ssh ansible@redis

% redis-cli
127.0.0.1:6379> ping
(error) LOADING Redis is loading the dataset in memory
127.0.0.1:6379> ping
(error) LOADING Redis is loading the dataset in memory
127.0.0.1:6379> ping
PONG

once it responds with PONG redis is back up and ready to serve requests.

Tail the redis log

To show the last few lines of the redis log during firefighting you can run:

cchq <env> run-shell-command redis 'tail /opt/data/redis/redis.log'

9.3. Firefighting Production Issues 209

http://oldblog.antirez.com/post/redis-persistence-demystified.html/
https://github.com/redis/redis/blob/5.0/redis.conf#L757-L770


CommCareHQ Deployment

Pillows / Pillowtop / Change feed

Symptoms of pillows being down:

• Data not appearing in reports, exports, or elasticsearch

• UCR or report builder reports behind

• Datadog monitor

Resources:

• graph of change feed activity

• Pillows documentation

• Pillows overview and introduction

Managing Pillows

You can check on the status of the pillow processors with

cchq <env> service pillowtop status

and you can restart a pillow which is not currently RUNNING with

cchq <env> service pillowtop start --only=<pillow_name>

Note that the elements returned by the status command are the names of the processors, not the names of the pillows
themselves.

For example if the status command identified that myenv-production-DefaultChangeFeedPillow-0 was not run-
ning, to restart the pillow one would run

#Correct - Restarting by pillow name
cchq myenv service pillowtop start --only=DefaultChangeFeedPillow

rather than

#Incorrect - Restarting by processor name
cchq myenv service pillowtop start --only=myenv-production-DefaultChangeFeedPillow-0

Formplayer / Cloudcare / Webapps

Formplayer sometimes fails on deploy due to a startup task (which will hopefully be resolved soon). The process
may not fail, but formplayer will still return failure responses. You can try just restarting the process with sudo
supervisorctl restart all (or specify the name if it’s a monolithic environment)

A formplayer machine(s) may need to be restarted for a number of reasons in which case you can run (separate names
by comma to run on multiple machines):

cchq <env> service formplayer restart --limit=formplayer_bXXX

210 Chapter 9. Reference Annexure

https://app.datadoghq.com/monitors#4013126?group=all&live=1d
https://app.datadoghq.com/dash/256236/change-feeds?live=true&page=0&is_auto=false&from_ts=1518372763225&to_ts=1518459163225&tile_size=m&fullscreen=185100827
https://commcare-hq.readthedocs.io/pillows.html
https://docs.google.com/presentation/d/1xgEZBer-FMUkeWutrTRcRbqKzVToK6mZvl0x2628BGY/edit#slide=id.p


CommCareHQ Deployment

Lock issues

If there are many persistent lock timeouts that aren’t going away by themselves, it can be a sign of a socket connection
hanging and Java not having a timeout for the connection and just hanging.

In that case, it can be helpful to kill the offending socket connections. The following command queries for socket
connections that look like the ones that would be hanging and kills them:

cchq <env> run-shell-command formplayer 'ss src {{ inventory_hostname }} | grep ESTAB |␣
→˓grep tcp | grep ffff | grep https | cut -d: -f5 | cut -d -f1 | xargs -n1 ss -K sport =
→˓' -b

Because it’s filtered, it won’t kill all socket connections, but it will kill more socket connections than strictly necessary,
since it is difficult to determine which specific connections are the problematic ones. But anecdotally this doesn’t cause
any user-facing problems. (I still wouldn’t do it unless you have to to solve this issue though!)

Full Drives / Out of Disk Space

If disk usage on the proxy ever hits 100%, many basic functions on the machine will stop working. Here are some ways
to buy some time.

Basic Commands

You can probe statistics before taking any action. df -h or dh -h / will show total disk usage. To query specific
directory/file usage, use: du -hs <path>. Note that these commands still respect permissions. If you need elevated
permissions, you can ssh to the affected machine as the ansible user (cchq –control <env> ssh ansible@<machine>),
and from there you can use sudo. The ansible password can be found within 1Pass

Clean Releases

Each release / copy of our commcare-hq git repo can be 500M - 2.7G (variation can depend on how efficiently git is
storing the history, etc.). It’s always safe to run

$ cchq <env> clean-releases and sometimes that alone can clean up space. This is run on every deploy, so if
you just deployed successfully, don’t bother.

Move logs to another drive

Check the size of the log files stored at /home/cchq/www/:raw-html-m2r:`<environment>`/log, these can get out of
hand. Last time this ocurred, we moved these into the shared drive, which had plenty of available disk space (but check
first!)

$ mv -v pattern-matching-old-logs.*.gz /mnt/shared/temp-log-storage-main-hd-full/

9.3. Firefighting Production Issues 211



CommCareHQ Deployment

Clear the apt cache

Apt stores its files in /var/cache/apt/archives. Use du as describe above to determine if this cache is consuming too
much space. If it is, these files can be cleaned via apt-get clean`

$ apt-get autoremove This removes packages that are no longer required. Sometimes the savings can be substan-
tial. If you run the above command, it should show you how much space it expects to free up, before you commit to
running it. On a recent occasion, this freed up about 20% of the disk

Manually rotate syslog

If for some reason syslog is either not rotating logs or the latest log has grown more than expected you can run

mv syslog other.syslog
kill -HUP <pid of syslog>
gzip other.syslog

Look at temp folders

On celery machines, specifically, tasks can generate a large volume of temporary files. Use du against /opt/tmp and
compare these results to other machines to determine if this is the likely issue. If so, some of these files may still be
in use. These files will likely be cleared once the task has completed. If not, we have an automated task that cleans up
files older than 2 days. If disk space is in a dire situation, it may be possible to remove some of the older files (using
lsof <file> or lsof +D <directory> can help find what files are in use)

Network Connection Issues (please help expand)

If you suspect some sort of network issue is preventing two servers from talking to each other, the first thing you should
verify is that the processes you expect to talk to each other are actually running. After that, here are some things to try:

Ping

Try pinging the machine from the computer you’d expect to initiate the connection. If that doesn’t work, try pinging
from your local machine while on the VPN.

esoergel@hqproxy0:~$ ping hqdb0.internal-va.commcarehq.org
PING hqdb0.internal-va.commcarehq.org (172.24.32.11) 56(84) bytes of data.
64 bytes from 172.24.32.11 (172.24.32.11): icmp_seq=1 ttl=64 time=42.6 ms
64 bytes from 172.24.32.11 (172.24.32.11): icmp_seq=2 ttl=64 time=41.3 ms

212 Chapter 9. Reference Annexure



CommCareHQ Deployment

netcat

Netcat is a mini server. You can set it up to listen on any port and respond to requests. Run something like this to listen
on port 1234 and wait for a request:

esoergel@hqdb0:~$ printf "Can you see this?" | netcat -l 1234

Then go over to the other machine and try to hit that server:

$ curl hqdb0.internal-va.commcarehq.org:1234
Can you see this?$

Looks like the request went through! If you go back and check on the netcat process, you should see the request:

esoergel@hqdb0:~$ printf "Can you see this?" | netcat -l 1234
HEAD / HTTP/1.1
Host: hqdb0.internal-va.commcarehq.org:1234
User-Agent: curl/7.50.1
Accept: */*

esoergel@hqdb0:~$

Tips and Tricks

Never run that painful sequence of sudo -u cchq bash, entering the venv, cd’ing to the directory, etc., again just to run
a management command. Instead, just run e.g.:

cchq <env> django-manage shell --tmux

first thing after logging in.

Some Short Write-ups and Examples

See Troubleshooting Pasteboard / HQ chat dumping ground. There is also some ElasticSearch material

Backups

Information for restoring elasticsearch and postgres from a backup are at Restoring From Backups

SMS Gateways

See the page on SMS Gateway Technical Info for API docs and support contacts for each gateway.

9.3. Firefighting Production Issues 213

https://confluence.dimagi.com/pages/viewpage.action?pageId=29559520
https://docs.google.com/a/dimagi.com/document/d/1EMy-m-Q3aia43q_TqeJdAFVLEx6UfEu3vRqSXskpQ_Y/edit#heading=h.xygb2bpkcfie
https://confluence.dimagi.com/display/commcarehq/Restoring+From+Backups
https://confluence.dimagi.com/display/commcarehq/SMS+Gateway+Technical+Info


CommCareHQ Deployment

9.3.2 Celery Firefighting Guide

Queue is blocked

Symptoms

You check /serverup.txt?only=celery and see a queue has been blocked for some duration. Example of what this looks
like:

• Failed Checks (web8-production): celery: reminder_case_update_queue has been blocked for 0:27:57.285204
(max allowed is 0:15:00)

Resolution

You can restart the blocked queue using:

cchq <env> service celery restart --only=<celery_queue>

To obtain a list of queues run:

cchq <env> service celery help

Worker is down

Symptoms

You check /hq/admin/system/check_services or /serverup.txt?heartbeat (example: https://www.commcarehq.org/
serverup.txt?heartbeat) and it shows the worker is down:

• celery@hqcelery2.internal-va.commcarehq.org_main.1491657794_timestamp worker is down Using the envi-
ronments and inventory files to find which machine hosts the worker, you log in and verify the worker is stopped:

dogeillionaire@hqcelery2:~$ sudo supervisorctl status
commcare-hq-production-celery_background_queue RUNNING pid 10464, uptime 0:45:47
commcare-hq-production-celery_main STOPPED Apr 08 02:18 PM
commcare-hq-production-celery_saved_exports_queue RUNNING pid 10463, uptime 0:45:47

Resolution

Start the worker:

dogeillionaire@hqcelery2:~$ sudo supervisorctl start commcare-hq-production-celery_main
commcare-hq-production-celery_main: started

Verify the worker is running:

dogeillionaire@hqcelery2:~$ sudo supervisorctl status
commcare-hq-production-celery_background_queue RUNNING pid 10464, uptime 0:45:47
commcare-hq-production-celery_main RUNNING pid 10462, uptime 0:01:22
commcare-hq-production-celery_saved_exports_queue RUNNING pid 10463, uptime 0:45:47

214 Chapter 9. Reference Annexure

https://www.commcarehq.org/serverup.txt?heartbeat
https://www.commcarehq.org/serverup.txt?heartbeat
mailto:celery@hqcelery2.internal-va.commcarehq.org_main.1491657794_timestamp


CommCareHQ Deployment

Worker won’t start

Symptoms

You check /hq/admin/system/check_services or /serverup.txt?heartbeat (example: https://www.commcarehq.org/
serverup.txt?heartbeat) and it shows the worker is down:

• celery@hqcelery2.internal-va.commcarehq.org_main.1491657794_timestamp worker is down Using the envi-
ronments and inventory files to find which machine hosts the worker, you log in and verify the worker has not
been able to start:

dogeillionaire@hqcelery2:~$ sudo supervisorctl status
commcare-hq-production-celery_background_queue RUNNING pid 10464, uptime 0:45:47
commcare-hq-production-celery_main FATAL
commcare-hq-production-celery_saved_exports_queue RUNNING pid 10463, uptime 0:45:47

Resolution

View the log file to see what the error is preventing the worker from starting and resolve that error. The log file name
and location are given in the service template for supervisor.

dogeillionaire@hqcelery2:/home/cchq/www/production/log$ cat celery_main.log | less

When viewing output with less, pressing shift+G takes you to the end of the file, just pressing G takes you
to the beginning of the file, and page up / down scrolls pages.

The error might be an exception in python code raised when starting the worker up, in which case a code fix is needed.
Sometimes the error might also be an out of memory issue. If it is an out of memory issue, you can check to see if the
machine is still out of memory with htop. If the machine is still out of memory right now, you may need to look for an
zombie celery processes from stale child worker processes that were not stopped at previous shutdown using ps -ef
| grep celery and stop them with kill as the cchq user.

Once the error is fixed, follow the instructions under “Worker is down” to start the worker.

Worker did not shut down properly

Symptoms

You check /serverup.txt?heartbeat (example: https://www.commcarehq.org/serverup.txt?heartbeat) and it shows the
worker is running when it shouldn’t be:

• celery@hqcelery2.internal-va.commcarehq.org_main.1491639725_timestamp celery worker is running when
we expect it to be stopped

9.3. Firefighting Production Issues 215

https://www.commcarehq.org/serverup.txt?heartbeat
https://www.commcarehq.org/serverup.txt?heartbeat
mailto:celery@hqcelery2.internal-va.commcarehq.org_main.1491657794_timestamp
https://www.commcarehq.org/serverup.txt?heartbeat
mailto:celery@hqcelery2.internal-va.commcarehq.org_main.1491639725_timestamp


CommCareHQ Deployment

Resolution

To kill the workers that didn’t shut down properly, you can use the commcare-cloud <env>
kill-stale-celery-workers. This will automatically figure out which ones to kill. If that still doesn’t
work, follow the steps below.

Using the environments and inventory files to find which machine hosts flower, use your browser to hit port 5555 on
that machine (example: http://hqcelery1.internal-va.commcarehq.org:5555/) to view flower.

On the dashboard you should see two of the same workers listed as being online, but with different timestamps in their
name:

Check the box next to the worker you saw in the serverup notice (which should also be the one with the older, or smaller,
timestamp), and shut it down by selecting Shut Down from the dropdown at the top of the page:

216 Chapter 9. Reference Annexure

http://hqcelery1.internal-va.commcarehq.org:5555/
./flower-two-active-workers.png
./shutdown-worker.png


CommCareHQ Deployment

Worker is deadlocked

Symptoms

The worker is running (so there is no down notice), but it won’t accept new tasks. If the main worker is deadlocked,
people may be reporting that they can’t do exports or imports of data. When you view the current active tasks for the
worker with the show_celery_tasks management command, it either shows no tasks or tasks that are hours old.

Resolution

Restart the worker:

dogeillionaire@hqcelery2:~$ sudo supervisorctl restart commcare-hq-production-celery_main
commcare-hq-production-celery_main: stopped
commcare-hq-production-celery_main: started

Verify the worker is running:

dogeillionaire@hqcelery2:~$ sudo supervisorctl status
commcare-hq-production-celery_background_queue RUNNING pid 10464, uptime 0:45:47
commcare-hq-production-celery_main RUNNING pid 10462, uptime 0:01:22
commcare-hq-production-celery_saved_exports_queue RUNNING pid 10463, uptime 0:45:47

The queue the worker is consuming from has a large backlog of tasks

Symptoms

The datadog monitor for queued tasks has given an alert for the queue that the worker consumes from.

If the main queue has a large backlog of tasks, people may be reporting that they can’t do exports or imports of data.

When you view the current active tasks for the worker with the show_celery_tasks management command, it shows
tasks that are relatively fresh, so you don’t believe the worker is deadlocked.

Resolution

For the most part, we just have to wait until the tasks are processed. If it’s impacting something like exports/imports,
It’s worth trying to estimate how long it will take and put up a banner mentioning exports/imports are down at the
moment and to not keep retrying them as it will just exacerbate the issue.

If this happens often for the same queue, then it means a longer-term solution is needed, such as increasing the concur-
rency on the worker, reducing the time it takes for the tasks to be completed, or moving the tasks to a different queue
(or to a new queue and worker). However, there are a couple short-term things we may be able to do to help reduce the
time we need to wait before it’s back to normal:

1. If you log into the machine where the worker is hosted and there is a good amount of free memory (at least 2GB
or so), you can temporarily increase the concurrency on the worker. To do this:

a. Using the environments and inventory files to find which machine hosts flower, use your browser to hit port
5555 on that machine (example: http://hqcelery1.internal-va.commcarehq.org:5555/) to view flower.

b. From the dashboard, click the name of the worker which consumes from the queue that is backed up.

9.3. Firefighting Production Issues 217

http://hqcelery1.internal-va.commcarehq.org:5555/


CommCareHQ Deployment

c. Under “Pool size control”, increase the number of child processes that worker has by selecting a number
of processes to increase by in the dropdown and click the “Grow” button. For example, if the current
concurrency is 4 and you select 2 in the dropdown and click “Grow”, the new max concurrency will be 6.

Be careful with this - if you increase by too much you may start to see tasks failing with out of memory (SIGSEGV)
errors. Rule of thumb is to only increase by 2 processes per 1 GB of memory you can use up, and always try to leave
at least 1 GB of memory free on the machine at all times. So if there’s 2 GB of memory free, only increase by 2, and
if there’s 3 GB of memory free, only increase by 4. If you start having out of memory issues after you do this, you’ll
need to either shrink the pool or restart the worker.

This rule of thumb also does not apply to the workers that use gevent pooling - we can be a little more liberal about
increasing the concurrency on those, keeping in mind that whatever you increase it to, that many threads may be running
at a time.

Also note this only temporary; once the worker is restarted on next deploy or manually, it will go back to its old
concurrency setting.

1. If there are a lot of tasks clogging up the queue that are not worth processing anymore (for example,
exports that people had initiated long ago that they are no longer waiting for), you can revoke those tasks.
To do this, do the following:

a. Log into any machine on the cluster (it doesn’t have to be where the worker is hosted), and prep the
environment as you would for entering a django shell or running any management command:

dogeillionaire@hqcelery0:~$ sudo -u cchq bash
cchq@hqcelery0:~$ cd /home/cchq/www/production/current
cchq@hqcelery0:/home/cchq/www/production/current$ source python_env/bin/activate
(python_env) cchq@hqcelery0:/home/cchq/www/production/current$

b. Invoke the revoke_celery_tasks management command, passing the fully qualified task␣
→˓names to revoke as args:

218 Chapter 9. Reference Annexure

./increase-pool-size.png


CommCareHQ Deployment

(python_env) cchq@hqcelery0:/home/cchq/www/production/current$ python manage.py revoke_
→˓celery_tasks corehq.apps.export.tasks.populate_export_download_task
2017-04-09 12:34:19.525830 Revoked 161a7623a3f444e7b361da4b4fa6fc42 corehq.apps.export.
→˓tasks.populate_export_download_task
2017-04-09 12:34:26.803201 Revoked a855bac716ca4850899866cc97076c3d corehq.apps.export.
→˓tasks.populate_export_download_task

This command will just keep running, revoking all existing and new tasks that it finds that match the given task name(s).
This command is only able to revoke tasks received by the worker from rabbitmq. The worker does not see all the tasks
in the queue all at once since the tasks are prefetched by the worker from rabbitmq a little at a time, so to revoke them
all you just have to keep it running. When you no longer need it, just stop it with Ctrl+C.

Intermittent datadog connection errors

Symptoms

Receiving alerts that the datadog agent on a celery machine is not reporting. The alerts recover on their own but
continue to trigger.

Resolution

This is only relevant if these alerts are for the first celery machine celery[0]:

cchq <env> service celery restart --limit=celery[0]

Common RabbitMQ Firefighting Scenarios

RabbitMQ is down

Symptoms

There are 500 emails saying Connection Refused to a service running on port 5672

You see errors mentioning a celery worker cannot connect to amqp broker in the celery logs

Resolution

See Restarting Services on this Firefighting Guide.

9.3. Firefighting Production Issues 219



CommCareHQ Deployment

Disk filling up

Symptoms

Disk usage warning

Resolution

1. Use ‘ncdu’ on the machine to detemine if it’s RabbitMQ that’s using up the disk

2. Check the RabbitMQ dashboard to determine which queue is causing the issue a.
https://app.datadoghq.com/screen/integration/237/rabbitmq—overview

3. Ensure that the celery workers are running and consuming the queue

4. Purge the queue. Only do this if the tasks can be re-queued e.g. pillow_retry_queue

celery -A corehq purge -Q queue_1,queue_2

Useful Celery Commands

Show celery tasks

Unfortunately, flower often times will show stale data. To view the most current information on active, reserved, or
scheduled tasks for a worker, use this command.

python manage.py show_celery_tasks <worker name> <task state>

This command prints the celery tasks in the given state on the given worker. For example, to show all active tasks being
processed by the main worker:

python manage.py show_celery_tasks celery@hqcelery2.internal-va.commcarehq.org_main.
1491701762_timestamp active

To view a list of worker names, use the show_celery_workers command.

Show celery workers

To get a quick list of workers that are currently running, use this command:

python manage.py show_celery_workers

Shut down a celery worker

To initiate a warm shutdown for a worker, you can either use flower as described in the “Worker did not shut down
properly” section above, or you can use this command:

python manage.py shutdown_celery_worker_by_hostname <worker name>

The :raw-html-m2r:`<worker name>` parameter will be one of the values you get from running python manage.py
show_celery_workers.

220 Chapter 9. Reference Annexure

https://app.datadoghq.com/screen/integration/237/rabbitmq---overview


CommCareHQ Deployment

Revoke celery tasks

To revoke specific tasks, issue this command, passing the fully-qualified python task names as args:

python manage.py revoke_celery_tasks <task name 1> <task name 2> ...

This command revokes all active, reserved, and scheduled tasks (from all workers that are online) matching any of the
given fully-qualified task names. It’s best to leave this command running for a bit in order to get them all, as it will
keep polling for tasks to revoke, and there are likely to be tasks in the message queue which haven’t been received by
the worker yet. This command can be useful, for example, if there is a huge backlog of export tasks that are stale and
are just causing the queue to be backed up. For example, to revoke all export tasks, keep this running for a bit (every
time a task is revoked it will be printed to the console):

python manage.py revoke_celery_tasks corehq.apps.export.tasks.populate_export_download_task

You can pass more than one task to this command, and you can stop it any time with Ctrl+C.

Purge queue

NOTE: This should almost never be necessary in production and can be more useful during local development. In
production it’s better to target specific tasks to revoke using the revoke_celery_tasks command described above. In
case you do need to do this in production, It’s best to stop the worker that’s consuming from that queue first:

sudo supervisorctl stop <...>

and then restart it after purging:

sudo supervisorctl start <...>

To purge all messages in a rabbitmq message queue:

celery -A corehq purge -Q queue_1,queue_2

We use rabbitmqctl to inspect RabbitMQ. All rabbitmqctl commands must be run as the root user on the machine
hosting RabbitMQ.

Locally you can use sudo to run these commands, but in a production environment you’ll need to switch to the root
user first.

The :raw-html-m2r:`<vhost name>` parameter is commcarehq in our production environments. Locally you might
have this set to /, but you can check it with the list virtual hosts command.

List Virtual Hosts

rabbitmqctl list_vhosts

List number of messages in each queue

This command lists the number of messages in each queue (i.e., the number of tasks in each celery queue) that are
either ready to be delivered to a consumer or have been delivered but have not been acknowledged yet.

rabbitmqctl list_queues -p <vhost name> name messages

9.3. Firefighting Production Issues 221



CommCareHQ Deployment

9.4 Specialized Howtos

Below docs contain how to instructions for special operations.

9.4.1 White label an existing CommCare HQ instance

Describes how to have two URLs point to the same CommCare HQ environment and serve separate branding for each.

Customization possible

• Login page can be customized per host with default: CUSTOM_LANDING_TEMPLATE in public.yml

• CommCare HQ name can be customized per host with default: COMMCARE_HQ_NAME in public.yml

• CommCare name can be customized per host with default: COMMCARE_NAME in public.yml

• Error pages can be customized by creating a new branch in the repository defined by
commcarehq_errors_repository. To reference the new branch specify a new folder and the branch in
reach_errors_home and reach_commcare_errors_branch

Not supported

• Emails will come from the same addresses

• A user’s account will be shared between both URLs

• You cannot limit a domain to only one URL

9.4.2 Configure a firewall on the servers

In situations where the servers are not behind a spearate firewall it is necessary to run a firewall service on the each
server to lock down access to unprotected services.

If you are unsure whether this is an issue or not you can try to access some of the services directly (replace <comm-
care.mysite.com> with the address of your CommCare instance):

Celery Flower: https://<commcare.mysite.com>:5555

Elasticsearch: https://<commcare.mysite.com>:9200

If either of those URLs work then you need a firewall.

Configuration

This setup uses ufw.

In order to configure the firewall you need to determine what network interfaces your servers have. There must be two
interfaces, one for secure traffic and one for insecure traffic.

The public IP address of the proxy server should be connected to one of these interfaces.

In the example below eth0 is the private interface and eth1 is the public:

• Server1:

– eth0: 172.16.23.1

222 Chapter 9. Reference Annexure

https:/
https:/
https://wiki.ubuntu.com/UncomplicatedFirewall


CommCareHQ Deployment

– eth1: 213.55.85.200

• Server2:

– eth0: 172.16.23.2

To configure the firewall for this setup add the following to your environment’s public.yml file:

ufw_private_interface: eth0

Now run the following command: (before you run this make sure you have access to your servers in case you get locked
out)

$ commcare-cloud <env> ansible-playbook deploy_common.yml --tags ufw-proxy,ufw

This will apply the following rules:

proxy

allow 443 in (https)
allow 80 in (http)
allow 22 in (ssh)
allow 60000:61000 in (mosh)
allow all in on <ufw_private_interface>
block all in

all other servers

allow all in on <ufw_private_interface>
block all in

9.4.3 Adding a new machine to a cluster

#. Add the machine to inventory.ini #.

Update the local known hosts

$ cchq <env> update-local-known-hosts

1. For proxy, webworkers, celery, pillowtop run the following (this is the only step that modifies machines other
than the new one):

# Register with the shared dir host whitelist
# so the shared dir host allows the new machine to mount the shared dir
cchq <env> ansible-playbook deploy_shared_dir.yml --limit shared_dir_host

2. Deploy stack

cchq --control <env> deploy-stack --first-time --limit <new host>

If it fails part way through for transient reasons (network issue, etc.) and␣
→˓running again fails with SSH errors, that means it has already switched over from␣
→˓the factory SSH setup to the standard SSH setup we use, and you can no longer use␣
→˓--first-time. To resume, run the following instead

9.4. Specialized Howtos 223

../commcare-cloud/env/index.md#inventoryini


CommCareHQ Deployment

$ cchq --control <env> deploy-stack --skip-check --skip-tags=users --limit <new␣
→˓host> # Only run this to resume if the above fails part way through

3. For anything that has commcarehq code you then have to deploy.

To make sure all the machines are running the same version of commcare otherwise the machine that
was just provisioned has the latest, and everything else has an old version.

# this is important in case there was drift between the branch where new setup was␣
→˓run and master
# it also makes sure that all machines have the same settings
$ cchq <env> update-config
$ cchq <env> deploy

4. If your change involves shuffling processes around in app-process.yml or otherwise requires updating supervisor
confs on machines other than the new one, run

This updates the supervisor configurations (text files) on the relevant machine so that supervisor knows
what processes should be running.

$ cchq <env> update-supervisor-confs

9.4.4 Performance benchmarking

Some useful tooling has been built for evaluating the performance of CommCare HQ.

Dimagi uses Locust for performance benchmarking. The code Dimagi uses is available at https://github.com/dimagi/
commcare-perf . See the README for installation instructions, and further documentation on how to test with form
submissions that mimic those of your project.

9.4.5 Migrating zookeeper to a new node.

This doc will explain how to migrate a running zookeeper to a new node without any downtime. First we will run
ZooKeeper in replicated mode and shut down the primary server after that the secondary server will take over.

1. Add the new node in zookeeper group and run deploy-stack .. code-block:

cchq <env> deploy-stack --limit=<zookeeper node>

2. Edit conf /etc/zookeeper/conf/zoo.cfg on both the nodes

server.1=zookeeper node1 IP:2888:3888
server.2=zookeeper node2 IP:2888:3888

Also edit /var/lib/zookeeper/myid to give each one an ID. (for ex 1 and 2 ) and restart the zookeeper.

3. Check if replication is working on both zookeeper node.

$ echo dump | nc localhost 2181 | grep brokers

You should see same output on both the server.

4. Remove the old zookeeper node from zookeeper group and run deploy-stack again to update all the kafka server
to connect with new zookeeper node.

224 Chapter 9. Reference Annexure

https://github.com/dimagi/commcare-perf
https://github.com/dimagi/commcare-perf
https://github.com/dimagi/commcare-perf/blob/main/README.rst
https://github.com/dimagi/commcare-perf/blob/main/docs/index.rst


CommCareHQ Deployment

$ cchq <env> deploy-stack --limit=<All kafka nodes> --tags=kafka,zookeeper

5. Shutdown the old zookeeper node.

6. Remove the old node entry from /etc/zookeeper/conf/zoo.cfg on new zookeeper nodes and restart the
zookeeper service.

9.4.6 Add a new celery machine into existing cluster

Setup the new node

diff environments/<env>/inventory.ini
+ [celeryN]
+ <node ip>

diff environments/<env>/app_process.yml
+ 'celery11':
+ reminder_case_update_queue:
+ pooling: gevent
+ concurrency: <int>
+ num_workers: <int>

Configure

1. Configure Shared Directory

commcare-cloud <env> ap deploy_shared_dir.yml --tags=nfs --limit=shared_dir_host

1. Deploy new node

commcare-cloud <env> deploy-stack --limit=celeryN

Update Configs

commcare-cloud <env> update-config

Deploy code

cchq <env> deploy

9.4. Specialized Howtos 225



CommCareHQ Deployment

Update supervisor config

cchq <env> update-supervisor-confs

9.4.7 Add a new CouchDB node to an existing cluster

Setup the new node and add it to the cluster

1. Update inventory

+ [couchN]
+ <node ip>

[couchdb2]
...

+ couchN

1. Deploy new node

commcare-cloud <env> deploy_stack.yml --limit=couchN

1. Add node to cluster

$ commcare-cloud <env> aps --tags=add_couch_nodes --limit=couchdb2

Migrate database shards to the new node

1. Create a plan

e.g. 4 nodes with 3 copies of each shard (couchD is the new node)

# myplan.yml

target_allocation:
- couchA,couchB,couchC,couchD:3

2. Create new shard plan

$ commcare-cloud <env> migrate-couchdb myplan.yml plan

3. Compare the plan to the current setup

$ commcare-cloud <env> migrate-couchdb myplan.yml describe

Check that the new cluster layout is what you want. If not adjust
your plan file and try again.

4. Create migrate (copy data to new node)

This will shut down all the nodes in the cluster so make sure you have initiated downtime prior to this
step.

226 Chapter 9. Reference Annexure



CommCareHQ Deployment

$ commcare-cloud <env> migrate-couchdb myplan.yml migrate

Alternatively, if you can be confident that the plan keeps
more than half of the copies of each given shard in place
(i.e. moves less than half of the copies of each given shard)
then you can use the ``--no-stop`` flag,
and the migration will be done with no downtime.

5. Commit the changes

This will update the DB docs to tell Couch about the new shard allocation.

$ commcare-cloud <env> migrate-couchdb myplan.yml commit

6. Verify

$ commcare-cloud <env> migrate-couchdb myplan.yml describe

7. Redeploy Proxy

$ commcare-cloud <env> ansible-playbook deploy_couchdb2.yml --tags=proxy

Cleanup

After confirming that all is well we can remove old shards:

$ commcare-cloud <env> migrate-couchdb myplan.yml clean

9.4.8 Configuring VirtualBox for testing CommCare HQ

Step 1: Download and Install VirtualBox

Follow the instructions for your host machine operating system found at the VirtualBox Downloads page.

Step 2: Download, Install, and Configure Ubuntu

1. Download the latest Ubuntu 22.04 Server Edition ISO.

2. Configure VirtualBox

• Open VirtualBox and create a new Virtual Machine.

• Provide the VM with at least 16GB RAM, and a 40GB Disk, as per the minimum requirements for a
monolith.

• Once the VM is created, click Settings -> System -> Processor. Increase the number of processors to the
maximum you can

• Boot the VM and select the Ubuntu ISO you downloaded in the previous step

• Follow the Ubuntu installation prompts, ensuring you install the OpenSSH server. The other defaults should
all be left as-is unless you have specific requirements.

9.4. Specialized Howtos 227

https://www.virtualbox.org/wiki/Downloads
https://ubuntu.com/download/server/thank-you?version=22.04.2&architecture=amd64
../setup/new_environment.md#prerequisites
../setup/new_environment.md#prerequisites


CommCareHQ Deployment

Step 3: Configuring VirtualBox Networking

There are two options for configuring the VirtualBox network.

Before following these instructions it is wise to read and understand the NAT and Bridged sections of this VirtualBox
networking explained article. The rest of this section assumes knoweldge of that article.

NAT

This is the easiest, but will prevent you from accessing some CommCare features like formplayer.

Under the VM’s network settings click “Advanced” then “Port Forwarding”. Add the following rules:

Name Protocol Host IP Host Port Guest IP Guest Port
SSH TCP 127.0.0.1 2222 22
HTTPS TCP 127.0.0.1 8083 443

With these settings:

• SSH into your server with:

$ ssh username@localhost -P 2222

• Access CommCare HQ from a browser at: .. code-block:

https://localhost:8083
**Note**\ : the ``https`` part is important as redirects will not work using this␣
→˓method.

Bridged

In this mode, the virtual machine will get its own IP address from the router that the host is connected to. This will
allow the VM to be accessed from outside of the host.

Prerequisites

Bridged mode requires a few things from the host:

• A wired network connection, or a wireless connection that allows bridged connections (many wireless network
cards and wireless gateways do not allow this)

• Ideally, an ability to give specific MAC addresses a static IP address from the network router. Otherwise the
VM’s IP address might change on reboot.

• An ability to edit the host’s host file (/etc/hosts on unix machines)

228 Chapter 9. Reference Annexure

https://technology.amis.nl/2018/07/27/virtualbox-networking-explained/
https://technology.amis.nl/2018/07/27/virtualbox-networking-explained/


CommCareHQ Deployment

Setting up Bridged mode:

• Under the VM’s network settings, set the network adapter to be attached to the Bridged Adapter. Select the
network device on the host that is connected to the router (i.e. your wireless or wired card).

• For some wireless gateways which require a password, you might need to set the MAC address of the to the MAC
address of the host. This may sometimes work to get a new IP address, but some wireless gateways will only
give a single IP per MAC.

• If you have access to the router, set it up to give the VM’s MAC address in the settings with a static IP

• Boot your VM. If the settings are correct, the machine should boot and be given an IP address. Verify what the
IP address is with: .. code-block:: bash

$ ip addr

• On the host, edit the /etc/hosts file: .. code-block:: bash

$ sudo nano /etc/hosts

and add the following line to the end:

{ip address of the guest} monolith.commcarehq.test

With these settings:

• SSH into your server with:

$ ssh username@{ip address of the guest}

• Access CommCare HQ from a browser at: .. code-block:

https://monolith.commcarehq.test

Set up Sentry for error logs has infomration on how you can send metrics to sentry.io account from your CommCare
HQ instance. commcare-cloud also allows you to self host Sentry instance. The below guide describes how to do this.

9.4.9 Setup Sentry self hosting

Running sentry on self hosting requires following minimuim services to be running

• Postgresql

• Redis

• Kafka

• zookeeper

• Snuba

• Clickhouse server

• Sentry

9.4. Specialized Howtos 229

https://sentry.io


CommCareHQ Deployment

How to setup

1. Add a server to sentry and give it a var kafka_broker_id

2. Setup following vars in public.yml .. code-block:

sentry_dbuser:
sentry_dbpassword:
sentry_database:
sentry_system_secret_key:
clickhouse_data_dir:
default_sentry_from_email:

3. Add the database and host detail inside postgresql.yml

4. Run following command .. code-block:

$ cchq <env> ap deploy_sentry.yml --limit=<sentry_hostname>

5. After the command is finished, ssh into sentry server, activate the sentry virtualenv and create a superuser for it.
.. code-block:

(sentry_app) root@MUMGCCWCDPRDRDV01:/home/sentry/sentry_app# sentry --config /home/
→˓sentry/config/ createuser
Email: test@test.com
Password:
Repeat for confirmation:
Should this user be a superuser? [y/N]: y
User created: test@test.com
Added to organization: sentry

6. Login to the sentry UI and now this admin account can be used to manage the sentry.

9.4.10 Tips and Tricks

The following list outlines some useful things that may help when doing specific tasks. Before using them you should
make sure you understand what it is doing and when it is appropriate to use.

Update localsettings in a specific release

Limitations

This only works for CommCare processes and not for Formplayer.

230 Chapter 9. Reference Annexure



CommCareHQ Deployment

Usage scenario

Testing configuration changes without impacting running processes

Setup

Create a new release:

commcare-cloud <env> deploy commcare --private [--limit ...]

Note down the release folder location: /home/cchq/www/<env>/releases/YYYY-MM-DD_HH.MM

Update configuration in that release only

commcare-cloud <env> update-config --limit [LIMIT] -e code_home=[RELEASE FOLDER]

This will override the default value of the code_home variable which normally points to the current release.

Choosing a value for LIMIT:

• If you did not use --limit, set LIMIT to django_manage

• If you did use --limit, set LIMIT to the same value as used before.

9.4.11 How To Rebuild a CommCare HQ environment

These steps delete all CommCare data in your environment.

In practice, you will likely only need this to delete test environments. We strongly discourage using any of these of
steps on production data. Please fully understand this before proceeding as this will permenantly delete all of your data.

Prior to Wiping Data

1. Ensure CommCare services are in a healthy state. If you observe any issues, see the Troubleshooting section
below.

$ cchq <env_name> django-manage check_services

2. If planning to migrate data, deploy CommCare from a specific revision

$ cchq <env_name> deploy commcare --commcare-rev=<commit-hash>

Note: You should have been given a commit hash that matches the revision of CommCare used to generate your
exported data, and it is critical that this same CommCare revision is used to rebuild the new environment, and
load data in. Please request a commit hash if you were not provided one.

3. Stop CommCare services to prevent background processes from writing to databases.

$ cchq <env_name> downtime start
# Choose option to kill any running processes when prompted

9.4. Specialized Howtos 231



CommCareHQ Deployment

How To Wipe Persistent Data

These steps are intended to be run in the sequence given below, so you shouldn’t proceed to next step until the prior
step is completed.

1. Ensure CommCare services are stopped to prevent background processes from writing to databases.

$ cchq <env_name> service commcare status

2. Add “wipe_environment_enabled: True” to public.yml file.

3. Wipe BlobDB, Elasticsearch, and Couch using management commands.

$ cchq <env_name> django-manage wipe_blobdb --commit
$ cchq <env_name> django-manage wipe_es --commit
$ cchq <env_name> django-manage delete_couch_dbs --commit

4. Wipe PostgreSQL data (restart first to kill any existing connections)

$ cchq <env_name> service postgresql restart
$ cchq <env_name> ap wipe_postgres.yml

5. Clear the Redis cache data

$ cchq <env_name> django-manage flush_caches

6. Wipe Kafka topics

$ cchq <env_name> ap wipe_kafka.yml

7. Remove the “wipe_environment_enabled: True” line in your public.yml file.

Rebuilding environment

1. Recreate all databases

$ cchq <env_name> ap deploy_db.yml --skip-check

2. Run migrations for fresh install

$ cchq <env_name> ap migrate_on_fresh_install.yml -e CCHQ_IS_FRESH_INSTALL=1

3. Create kafka topics

$ cchq <env_name> django-manage create_kafka_topics

Warning: If you are migrating a project to a new environment, return to the steps outlined in 4. Import the data to
the new environment. Do not start services back up until you have finished loading data into your new environment.

232 Chapter 9. Reference Annexure



CommCareHQ Deployment

Start new environment

Note: The following steps should only be run if you are not planning to migrate a project from an existing environment.

1. End downtime (you will encounter a prompt that says no record of downtime was found, continue anyway as this
starts services up).

$ cchq <env_name> downtime end

2. Recreate a superuser (where you substitute your address in place of “you@your.domain”).

$ cchq <env_name> django-manage make_superuser you@your.domain

Troubleshooting

Issues with check_services

• Kafka: No Brokers Available - Try resetting Zookeeper by performing the following steps:

$ cchq monolith service kafka stop
NOTE: The following paths may vary if you've specified different paths for ``kafka_
→˓data_dir`` and ``zookeeper_data_dir``
$ rm -rf /var/lib/zookeeper/*
$ rm -rf /opt/data/kafka/data/*
$ cchq monolith service kafka restart

9.5 Settings in public.yml

The following are settings found in the public.yml file. Many are passed on to CommCare HQ in its localsettings.
py file:

9.5.1 Email addresses

daily_deploy_email:
Notifications are emailed to this address when a deploy completes.

root_email:
Used as the email address when requesting SSL certificates from LetsEncrypt. Proxy server notifications are
also emailed to this address.

server_email:
Used as the “from” or “reply to” address by CommCare HQ for:

• Bug reports from CommCare users

• Notifications of requests for project spaces or organizations

• Notifications from the sync_prepare_couchdb_multi management command

server_admin_email:
All CommCare HQ web service (Django) administrator email notifications are sent to this address. (It is used as
the address for Django ADMINS and MANAGERS.)

9.5. Settings in public.yml 233

mailto:you@your.domain


CommCareHQ Deployment

default_from_email:
Used as the “from” address for:

• All emails sent via the Celery email queue

• “Dimagi Finance” and “Dimagi Accounting” on automated accounting reports, sales requests, subscription
reminders, invoices, weekly digests of subscriptions, and pro-bono applications

• The send_email management command

return_path_email:
The email account for receiving bounced emails. This needs to use an IMAP4+SSL compliant service. It is
tested with GMail.

Used by the process_bounced_emails management command.

support_email:
This is the address given to users to reach out to for support in situations where they may have queries, for
example, in password reset emails, project space transfers, the 404 page, among others.

In non-Dimagi environments this address is given as the email for Support in CommCare apps.

probono_support_email:
The address given for Support in pro-bono application submissions.

accounts_email:
The email account to which generated invoices and weekly digests are sent, and to which subscription reminders
are CCed. It is also the contact address given for subscription changes.

data_email:
The address to which the monthly Global Impact Report is sent.

subscription_change_email:
Notifications of subscription changes are sent to this address.

internal_subscription_change_email:
Notifications of internal changes to subscriptions are sent to this address.

billing_email:
Enterprise Plan and Annual Plan requests are sent to this address. It is also given as the contact address for
signing up for new subscriptions.

invoicing_contact_email:
The contact email address given on invoices, and notifications regarding payment methods.

growth_email:
Subscription downgrade and pause notifications are sent to and BCCed to this address.

saas_ops_email:
Unused

saas_reporting_email:
The “Credits On HQ” report is sent to this address for the “production”, “india” and “swiss” Dimagi environ-
ments.

master_list_email:
This address is sent a list of self-started projects which have incomplete info and over 200 form submissions.

sales_email:
Given as the contact address if users need more OData feeds, more Report Builder reports, or messaging/SMS
features.

privacy_email:
Given as a contact address in the End User License Agreement.

234 Chapter 9. Reference Annexure



CommCareHQ Deployment

feedback_email:
Feedback for features is sent to this address.

eula_change_email:
When a user changes a custom End User License Agreement or data-sharing properties for their domain, a
notification is sent to this address.

contact_email:
Unused

soft_assert_email:
Soft asserts in the source code that that are called with send_to_ops send to this email address.

new_domain_email:
This address is notified when a user requests a project space or organization.

9.6 Ports Required for CommCare HQ

Below are the list of ports for various services required for running CommCare HQ.

Process Port Internal Ac-
cess

External Ac-
cess

Allow in
Iptables?
Monolith Env

Allow in
Iptables?
Non-Monolith OR On-Premises Env

Comments

SSH 22 yes Restricted
IPaddress

yes yes

Nginx https 443 • yes yes yes

Nginx http 80 • yes yes yes

Monolith
Commcare

9010 yes no no depends :sub:`routed
via nginx `

Formplayer 8181 yes no no depends Accessible to private network
Kafka 9092 yes no no depends Accessible to private network
Zookeeper 2181 yes no no depends Accessible to private network
Redis 6379 yes no no depends Accessible to private network
PostgreSQL
PgBouncer

5432 6432 yes no no depends Accessible to private network

RabbitMQ 5672 yes no no depends Accessible to private network
ElasticSearch
ES Cluster

9200 9300 yes no no depends Accessible to private network

CouchDB 5984 4369 yes no no depends Accessible to private network
Celery port no no
Mail/SMTP
ports

25 465 587 yes no

9.6. Ports Required for CommCare HQ 235



CommCareHQ Deployment

236 Chapter 9. Reference Annexure



CHAPTER

TEN

ABOUT THIS CHANGELOG

Below are the list of changes (the newest first) to commcare-cloud and CommCareHQ that need to be applied on your
environment to keep it up to date.

10.1 Changelog

10.1.1 2024-04-30 Copy Supply Point data to Invitation model Location Field

Copy data from supply_point field to location field in Invitation model to prevent errors with future migrations
to the users_invitation table.

This operation is required for all environments regardless of feature usage.

10.1.2 2024-02-13 SQL Repeat Record Migration addendum

Optional: Copy repeat records with deleted repeaters from Couch to SQL

10.1.3 2024-03-29 Upgrade To Node 20

Node.js 16.x LTS is reaching its end of life 15th June 2024, so node and npm must be upgraded on all machines.

10.1.4 2024-02-13 SQL Repeat Record Migration

Prepare for and migrate Repeat Records from Couch to SQL.

237



CommCareHQ Deployment

10.1.5 2024-01-14 Elasticsearch upgrade from 2.4.6 to 5.6.16

Upgrade to Elasticsearch 5.

CommCare HQ releases after March 1, 2024 will not support Elasticsearch 2.x. So we strongly recommend applying
this change before then.

10.1.6 2023-10-25 Reindex All Indices For Elasticsearch Upgrade

Reindex Elasticsearch Indices for upcoming ES Upgrade.

10.1.7 2023-09-12 update-to-python-3.9.18

Installs python 3.9.18 and build a new virutalenv for CommCare HQ

10.1.8 2023-06-14 Prepare project spaces for Case List Explorer report release

We have created a management command to assist with syncing data to the Case Search Index so that legacy projects
may access data in a new report that will be made generally available.

10.1.9 2023-04-10 upgrade-redis-to-v7

This change upgrade Redis from 6.x to 7.0 version. As part of our ongoing effort to keep CommCare HQ up to date
with the latest tools and libraries we have updated Redis from version 6.2 to version 7.0.

10.1.10 2023-03-23 Upgrade to Ubuntu 22.04

On April 1, 2023, the operating system that commcare-cloud has supported for the last 4-5 years, Ubuntu 18.04 “Bionic
Beaver”, will reach its end of life for support from its maintainer.

We are requiring that all CommCare HQ instances be upgraded to Ubuntu 22.04 “Jammy Jellyfish” by July 1, 2023,
in order to continue using commcare-cloud. Failure to update by this date will result in increasingly unexpected
behavior possibly including downtime and data loss.
Schedule maintenance for a time well before July 1, 2023, during which you should expect a downtime of up to many
hours. We also recommend making contingency plans in case issues arise during the first attempt at applying this
maintenance. For example, you may want to set an early date in April, with backup dates in May and June in case
issues arise during the first attempt.

238 Chapter 10. About this changelog



CommCareHQ Deployment

10.1.11 2023-03-09 Update Node to v16

Node.js 14.x LTS is reaching its end of life 30th April 2023, so node and npm must be upgraded on all machines.

10.1.12 2023-01-10 Configure Java 17 for Formplayer

In preparation for the release of Formplayer Java 17 version, we have shipped a few infrastructure changes through
Commcare Cloud. At this point, the ask to those maintaining CommCare instances is to follow the steps below to
configure Java 17 for Formplayer.

10.1.13 2023-01-10 Install Dart Sass as npm global dependency in preparation of
Bootstrap upgrade

Install Dart Sass as global NPM library.

10.1.14 2022-12-20 Dropping support for 3.6

Commcare-cloud will no longer attempt to support Python 3.6. We strongly encourage you to follow the steps below
to upgrade to Python 3.10 if you have not done so already.

10.1.15 2022-12-13 remove-unused-elastic-settings

CommCareHQ has two settings (CASE_ES_DROP_FORM_FIELDS and ES_XFORM_DISABLE_ALL) that were created sev-
eral years ago for tuning Elasticsearch in a specific environment which no longer exists. This change removes support
for those settings and the application logic that existed for them. We do not expect this to impact any self-hosted
environments, but it’s prudent to confirm.

10.1.16 2022-12-13 Populate a new field for Data Forwarders

Populate a new field for all Data Forwarders (repeaters).

This is optional, but is recommended to do for all environments where Data Forwarders are being used. A migration
will be added in the future, which will automatically apply these changes during a code deploy if they have not yet been
applied. If there are many Data Forwarders, it will slow down the deploy process.

10.1. Changelog 239



CommCareHQ Deployment

10.1.17 2022-11-28 New script added for virtualenv activation

Instructions to resolve this issue connecting to remote machines: “/home//commcare-cloud/control/activate_venv.sh:
No such file or directory”

10.1.18 2022-11-11 Backfill SMS event data for API performance

Backfill data in the sms_smssubevent table to improve the performance of the ‘messaging-event’ API.

This operation is only required if your environment is using SMS or Email workflows. Furthermore, an automatic
migration will be added to CommCare in the future which will apply these changes during a code deploy if they have
not already been applied.

10.1.19 2022-11-08 kafka-upgrade-to-3.2.3

Run command to upgrade Kafka version to 3.2.3 Update Scala version to recommended version 2.13

10.1.20 2022-11-08 Install Elasticsearch Phonetic Analysis Plugin

The Elasticsearch ‘case search’ index now requires the phonetic analysis plugin to be install in Elasticsearch.

10.1.21 2022-11-07 Upgrade to Python 3.10

Follow these steps to install and use Python 3.10 on your control machine(s) by December 19th, 2022.

10.1.22 2022-11-01 postgres-v14-upgrade

Postgres upgrade is recommended to be upgraded in two steps,upgrade from v10 to v13 and then to v14. This change
upgrade PostgreSQL from 10 to 13 and then to 14 version. As part of our ongoing effort to keep CommCare HQ up to
date with the latest tools and libraries we have updated PostgreSQL from version 10 to version 14.

10.1.23 2022-10-30 RabbitMQ upgrade to 3.10.7 version

This change upgrade RabbitMQ 3.10.7 version. The current installed RabbitMQ version 3.8.5 is already End of Life.
So, we strongly recommend applying this change.

240 Chapter 10. About this changelog

https://www.elastic.co/guide/en/elasticsearch/plugins/2.4/analysis-phonetic.html


CommCareHQ Deployment

10.1.24 2022-09-15 Update Prometheus variable

If using prometheus, run update-config to apply changes to prometheus environment variable.

10.1.25 2022-09-15 upgrade-kafka_3.2.0

Run command to upgrade Kafka version which 2.6.1 to 3.2.0 Update Scala version to recommended version 2.13

10.1.26 2022-09-14 bootstrap-userrole-auditing

Run command to create bootstrap audit records for existing user role records.

10.1.27 2022-09-05 upgrade-zookeeper_3.7.1

Run command to upgrade Zookeeper version which 3.2.0 to 3.7.1

10.1.28 2022-08-23 upgrade-redis

This change upgrade Redis from 4.0.8 to 6.x version. As part of our ongoing effort to keep CommCare HQ up to date
with the latest tools and libraries we have updated Redis from version 4.0.8 to version 6.2.

10.1.29 2022-08-19 upgrade-ansible

Run command to uninstall older ansible version which 2.9.26 and install 4.2.0

10.1.30 2022-08-11 historical-auditcare-data-migration

Instructions regarding Migrating Historical Auditcare data to SQL.

10.1.31 2022-06-17 Remove report_cases and report_xforms indices

CommCareHQ has two elasticsearch indices “report_cases” and “report_xforms” that were created many years ago for
some custom reports, but which haven’t been used in some time. This change deletes those indices and the change
processors used to populate them. We do not expect this to impact any self-hosted environments, but it’s prudent to
confirm.

10.1. Changelog 241



CommCareHQ Deployment

10.1.32 2022-06-03 Postgres upgrade from 9.6 to 10

This change upgrade PostgreSQL from 9.6 to 10 version. As part of our ongoing effort to keep CommCare HQ up to
date with the latest tools and libraries we have updated PostgreSQL from version 9.6 to version 10.

10.1.33 2022-05-25 update-supervisor-confs

Run command to update shell runner scripts for django and celery.

10.1.34 2022-04-19 Update PgBouncer configuration to support multiple processes

This change updates the PgBouncer role to support multiple processes on a single machine, so that more CPU cores
can be used (PgBouncer is single-threaded and uses only one CPU core by default).

10.1.35 2022-04-11 Upgrade Node.js to 14.19.1 and npm to 7.24.2

Node.js 12.x LTS is reaching its end of life 30th April 2022, so node and npm must be upgraded on all machines.

10.1.36 2021-11-02 Upgrade CommCare HQ to Python 3.9

Install Python 3.9 and build a new virtualenv for CommCare HQ.

10.1.37 2021-06-09 Migrate forms & cases from Couch to SQL

A series of management commands must be run to check for and migrate domains’ forms & cases from Couch to SQL.

10.1.38 2021-03-23 Optionally configure auditcare db

Some enterprise deployments of CommCare use a backend feature called “auditcare” as part of their audit logging
strategy. Auditcare is enabled by default, so it is active unless you went out of your way to disable it when you configured
CommCare. Historically it has used CouchDB as its data backend, but it is being switched to use PostgreSQL instead.
If you care about this feature then you may want to carefully consider this change log before your next commcare
deploy; otherwise you can ignore.

242 Chapter 10. About this changelog



CommCareHQ Deployment

10.1.39 2021-03-16 Update Formplayer request mapping

A small change to the nginx request matching for Formplayer requests that will prevent an additional / from being
prepended to the Formplayer requests.

10.1.40 2021-01-11 Dropping support for Python 2

Python 3.6 is supported and now the preferred version to use. In anticipation of dropping Python 2 support, an error
will be displayed when running commands with Python 2. Instructions for upgrading to Python 3 are provided in the
error message. An option is provided to temporarily revert to Python 2 (see update steps for details).

Python 2 support will end on 2021-03-04.

10.1.41 2021-01-08 Install new apt requirements on machines running commcarehq
code

We will be adding SAML 2.0 Single Sign On (SSO) support over the next few months which requires installing new
apt packages as dependencies of python requirements.

10.1.42 2020-11-16 update-letsencrypt-to-alternate-chain

On January 11 2021, Let’s Encrypt will change its default certificate chain from using the legacy Identrust root cer-
tificate, to its own modern ISRG root certificate. In order to maintain backwards compatibility with existing mobile
devices it is necessary to keep using the Identrust certificate chain.

10.1.43 2020-10-22 Update PostgreSQL monit configurations to be version specific

Update PostgreSQL monit configuration files to be version specific and use systemctl

10.1.44 2020-10-14 Run command to update Supervisor configurations

Run management command to remove unused errand-boy processes.

10.1. Changelog 243



CommCareHQ Deployment

10.1.45 2020-07-23 Run command to clear sensitive information from Django ses-
sions

It is stronly recommended to sanitize legacy Django sessions after upgrading to Django 2.2.

10.1.46 2020-07-09 Switch to new package manager

To stay up to date with javascript package security alerts, we need to make sure we are using a javascript package
manager that is supported by Github.

10.1.47 2020-04-16 Update git to the latest version

Due to a high-severity security advisory on the popular version control software program git, observing security best
practices dictates upgrading to one of the git versions designated as “Patched” such as 2.26.1.

10.1.48 2020-02-28 Update deploy CommandArgs

We are adding support for deploying from a specific commit hash or tag, replacing the deploy command’s
commcare-branch argument with a more general commcare-rev argument.

10.1.49 2020-02-05 ES upgrade from 1.7.6 to 2.4.6

This change upgrade Elasticsearch from 1.7.6 to 2.4.6 version. CommCare HQ releases after April 2, 2020 will not
continue to support Elasticsearch 1.7.6, so we strongly recommend applying this change before then.

10.1.50 2019-11-06 Update Formplayer Configuration

Some properties in the Formplayer configuration have changed names.

10.1.51 2019-08-30 Upgrade Sentry

The Sentry SDK used by CommCare HQ has been updated and along with it we have updated the configuration pa-
rameters.

244 Chapter 10. About this changelog

https://github.com/git/git/security/advisories/GHSA-qm7j-c969-7j4q


CommCareHQ Deployment

10.1.52 2019-08-23 Add deploy Command

In order to provide a consistent user interface while making underlying changes, we are replacing the commcare-cloud
<env> fab deploy command with a more concise commcare-cloud <env> deploy command.

10.1.53 2019-08-23 Removing support for Riak CS

We are removing support for deploying Riak CS clusters in commcare-cloud

10.1.54 2019-08-23 Fix python3 virutalenvs (Deprecated)

Update (2019-11-27): This fix is no longer necessary as it has been superceded by changes to the deploy script that
make this change automatically if necessary.

This fixes a bug with how python3 virtualenvs were created by ansible. This fix needs to be applied to any machine
which has a python3 virtualenv that was created by commcare-cloud.

The fix is also safe to run on all CommCare hosts.

10.1.55 2019-08-21 Move remaining management commands explicitly

This change requires editing app-processes.yml to add some of processes to the management_comamnds section

10.1.56 2019-08-20 Rename management commands explicitly

This change requires editing app-processes.yml to rename some of the processes in the management_comamnds
section

10.1.57 2019-07-17 Define management commands explicitly

This change requires changing app-processes.yml to include a list of management comamnds to run

10.1.58 2018-07-18 Upgrade to Python 3

This change installs Python 3.6.8, builds a new virtualenv, and runs CommCare HQ in Python 3.

10.1. Changelog 245



CommCareHQ Deployment

10.1.59 2019-05-13 Install Pango

This change installs pango and its dependencies for the weasyprint library which has been added as a requirement to
commcare-hq for proper pdf printing of unicode fonts

10.1.60 2019-02-26 Fix to restart nginx after every letsencrypt cert auto-renewal

Previously you had to manually restart nginx every time letsencrypt auto-renewed, which was about every two months.
We believed we had fixed this with Restart nginx after every letsencrypt cert auto-renewal, but there was an error in
our setup at that time that made it not work as intended.

10.1.61 2019-04-05 Update RabbitMQ logging configuration

This change updates the RabbitMQ logging configuration to change the log level from info to warning.

10.1.62 2019-02-27 Remove celery results backend from localsettings

Upgrading to celery 4.x requires removing the dependency on django-celery, which means that its results backend will
no longer be available. This removes the django-celery backend as the default from localsettings, so the results backend
can be specified by commcare-hq settings instead.

10.1.63 2019-02-26 Split pgbouncer vars from postgresql vars

This change extracts a new role from the existing postgresql role for installing and configuring pgbouncer.

As a result of this change the postgresql.yml environment configuration file needs to be changed to split out the
postgresql vars from the pgbouncer vars.

10.1.64 2019-02-27 Only monitor specific RabbitMQ queues

Datadog RabbitMQ monitoring restricts the number of queues it can monitor to 200. To avoid hitting this limit on large
scale deployments we limit the queues being monitored to only the primary queues.

246 Chapter 10. About this changelog



CommCareHQ Deployment

10.1.65 2019-02-22 Update supervisor confs to invoke celery directly

Upgrading to celery 4.x requires removing the dependency on django-celery, which means that the celery management
command becomes unavailable. This prepares for that by invoking the celery command directly.

10.1.66 2019-02-22 Separate celery datadog http check

This adds a specific http check for the celery check (serverup.txt?only=celery) to datadog. Environments that are not
relying on datadog for monitoring can ignore this change.

10.1.67 2019-02-11 Add tag to datadog http checks

This change adds “check_type” tag to the http_check datadog integration. This change applies only to envs using
datadog for monitoring.

10.1.68 2019-02-11 Java upgrade for formplayer

Previously, Formplayer was running on Java 7. This change updates us to Java 8 for formplayer.

10.1.69 2019-02-01 Generalize load case from fixture feature

Previously loading a case from a fixture required the fixture to be an attribute. This change allows using non-attributes
from the fixture.

10.1.70 2019-01-16 Fix encrypted temp directory permissions

This is a followup to Added encrypted temporary directory in which we introduced an encrypted directory for temp
files. In its original implementation, this file was owned by root, and processes were unable to write to it.

This changes the directory to be owned by cchq, allowing our processes to write to the file.

10.1.71 2019-01-02 Restart nginx after every letsencrypt cert auto-renewal

Update 2019-02-26: There was a bug in this fix and it has been superceded by Fix to restart nginx after every letsencrypt
cert auto-renewal.

Previously you had to manually restart nginx every time letsencrypt auto-renewed, which was about every two months.

10.1. Changelog 247



CommCareHQ Deployment

10.1.72 2018-12-15 Blob Metadata Migration - part 2

Form submission attachment metadata is being consolidated in the blob metadata table in SQL. This migration consists
of a series of commands that will consolidate the data in your environment.

10.1.73 2018-09-24 Blob Metadata Migration - part 1

Blob metadata needs to be migrated from CouchDB to SQL. This migration consists of a series of commands that will
move the data in your environment.

10.1.74 2018-11-26 Reorganize pillows

Pillows read changes from kafka and do various processing such as sending them to elasticsearch, transforming
into a UCR table row etc. A doc for same change is read multiple times for each processor, since there are sep-
arte pillows for each processor. This is inefficient, so we have combined multiple processors that apply for a
given document type (also called KAFKA_TOPIC) such as form/case/user under one pillow. For e.g. A new single
case-pillow pillow replaces various old pillows that process case changes such as CaseToElasticsearchPillow,
CaseSearchToElasticsearchPillow, ReportCaseToElasticsearchPillow, and kafka-ucr-main etc.

10.1.75 2018-11-20 New Case Importer Celery Queue

Importing cases is often a time-sensitive task, and prolonged backlogs are very visible to users. It will be useful to have a
separate queue specifically for case imports, to improve visibility into backups as well as typical runtimes. Additionally,
this is a first step towards allocating resources specifically for case imports, should that become necessary.

10.1.76 2018-08-16 Support multiple Kafka brokers

Large scale deployments of CommCare require scaling out Kafka brokers to support the high traffic volume (as well
as for high availability). Up until now CommCare has only supported a single broker.

10.1.77 2018-08-16 Add queue for analytics tasks

Tasks for analytics reporting have been separated into a new analytics celery queue.

248 Chapter 10. About this changelog



CommCareHQ Deployment

10.1.78 2018-07-25 Update Supervisor

Ubuntu 14.04 apt-get install supervisor installs supervisor 3.0b. We occasionally have issues that could be
related to supervisor, such as processes not stopping correctly. To rule it out as a possible cause, we decided it was
better to be on a later version of supervisor, and one that’s not in beta.

10.1.79 2018-07-13 Update supervisor service definitions

There are several CommCare specific processes that are defined in supervisor configuration files. This change decouples
the process definitions from code.

10.1.80 2018-06-11 Added encrypted temporary directory

Some of the CommCare processes make use of temporary files to store client data (such as data exports) so in order to
keep that data protected we have modified the setup to use an encrypted temporary directory.

10.1. Changelog 249


	Getting Started
	About CommCare HQ
	About this Guide
	A word of caution on Self Hosting
	How to use this guide to self host CommCare HQ

	Prerequisites to Setup CommCare HQ in Production
	Things to consider when Self Hosting
	CommCare Cluster Management
	Many processes

	Physical Server Management
	Network Connection
	Power Source
	Physical Security
	Temperature Control


	Architecture and Platform Overview
	Roles And Responsibilities for Hosting CommCare
	Introduction
	Infrastructure Provider
	Scope of Work
	Skills and Knowledge Required
	Sample Providers

	Cluster Management
	Scope of Work
	Skills and Knowledge Required
	Sample Providers

	Cloud Application Management / Operations Engineer
	Scope of Work
	Skills and Technologies
	Sample Providers

	CommCare Application Administrator
	Scope of Work
	Skills and Technologies


	Hardware requirements and Deployment Options
	Introduction
	Recommended Server Sizings for different loads
	Single Server
	Micro Cluster
	Small Cluster
	Large Cluster
	Running CommCare HQ inside Docker

	Managing Hardware and the Physical Environment
	Third-party documents
	Costs for maintaining a self-hosted production environment
	Hardware Replacement and Warranty
	Storage
	Networking
	Monitoring
	Backups / Disaster Recovery
	Support Licenses
	Representative Yearly Costs


	Software and Tools requirements
	CommCare Cloud Deployment Tool
	What is commcare-cloud?
	What is the Control Machine
	Setting up a control machine
	User Management
	Accessing the control machine
	commcare-cloud reference


	Deploy CommCare HQ
	Quick Install on Single Server
	Prerequisites
	Installation Steps
	Post Installation and Server Administration
	Tracking environments directory
	Running commcare-cloud commands

	Troubleshooting

	Install Using Commcare-Cloud on one or more machines
	Procure Hardware
	Single server
	Cluster
	All environments

	Prepare all machines for automated deploy
	Enable root login via SSH
	Initialize log file
	Install system dependencies

	Create a user for yourself
	Configure SSH
	Install CommCare Cloud
	Deploy CommCare HQ services
	Deploy CommCare HQ code
	Set up valid SSL certificates
	Clean up
	Test and access CommCare HQ
	Testing your new CommCare Environment
	Accessing CommCare HQ from a browser
	Troubleshooting first-time setup
	Firefighting issues once CommCare HQ is running

	First Steps with CommCare HQ
	Make a user
	Add a new CommCare build
	Link to a project on other CommCare HQ instance

	Operations

	Troubleshooting first time setup
	My site is showing “Internal Server Error”
	Further diagnosis
	Steps to fix
	Digging into the problem

	One of the setup commands is showing…
	RequestError: socket.error: [Errno 111] Connection refused
	Breakdown of a request to CouchDB
	How to confirm the issue
	How to solve
	Is the CouchDB nginx site on couchdb2_proxy enabled?
	Are there errors in the couchdb2 logs?


	One of the setup commands is showing…
	`Error requesting archive. Problem with NPM phantomjs package downloading and path not found`
	steps to resolve


	Testing your new CommCare Environment
	Step 1: Logging in
	Step 2a: Creating an application
	Step 2b: Populating the Registration Form
	Step 2c: Saving Case Properties
	Step 2d: Populating and creating properties for the Followup Form
	Step 3: Creating a mobile worker
	Step 4a: Deploying your application and submitting forms from mobile
	Step 4b: Submitting forms through Web Apps
	Step 5: Viewing submitted data in reports
	Step 6a: Exporting CommCare Data: Case Export
	Step 6b: (Optional) Exporting CommCare Data: OData Feed
	Step 7: Mobile worker upload
	Step 8: (Optional) SMS Gateway functionality

	Migrating CommCare HQ
	Migrate a Project from one instance to a new instance
	1. Switch mobile devices to a proxy URL
	2. Pull the domain data from the old environment
	3. Prepare the new environment to be populated
	4. Import the data to the new environment
	5. Ensure the new environment is fully functional. Test all critical workflows at this stage.
	6. Turn on the new environment
	7. Clean up
	Troubleshooting

	Migrating an entire CommCare HQ instance

	Go Live Checklist

	Operations and maintenance
	Managing The Deployment
	Server Management Basics
	Manage services
	Stop all CommCare HQ services
	Handling a reboot
	Update CommCare HQ local settings
	Run Django Management Commands
	A note about system users

	Deploying CommCare HQ code changes
	Prerequisites
	Step 1: Update commcare-cloud
	Step 2: Deploy new CommCare HQ code to all machines
	Preindex Command

	Step 3: Checking services once deploy is complete

	Advanced
	Run a pre-index
	Resume failed deploy
	Roll back a failed deploy
	Deploy static settings files
	Deploying Formplayer
	Formplayer static settings

	Scheduling Deploys
	CommCare deploy
	Formplayer deploy
	Local Settings deploy

	Resolving problems with deploys
	Local Settings Mismatch
	Potential Causes
	Example Error
	Resolution



	Monitoring and Alerting
	Datadog
	Prometheus
	CommCare Infrastructure Metrics
	Recommended Dashboards
	General Host
	Gunicorn
	Nginx
	PostgreSQL
	Elasticsearch
	CouchDB
	Kafka
	Broker Metrics
	Producer Metrics
	Consumer Metrics

	Zookeeper
	Celery
	RabbitMQ



	Set up Sentry for error logs
	Register account on sentry.io
	Configure for your account

	Expectations for Ongoing Maintenance
	Monitor the developers forum
	Deploy CommCare HQ at least once every two weeks
	Update commcare-cloud before every deploy and check the changelog

	Supporting Your Users
	Why set up a Support System
	Identifying stakeholders

	Components of a Support System
	Training and Documentation
	Support Channels for users to get the support they need
	Support team
	Support Processes
	Basic Support Process and Tools
	Priority field
	Ticket Workflow
	P1/P2 Process
	Process for P1/P2

	Advanced Support Process and Tools


	Support System Implementation checklist


	How to Scale
	Performance Benchmarking for CommCare HQ using Locust
	Introduction
	Getting started
	Submitting your own forms
	Saving results

	How to Estimate Infrastructure Sizing
	commcare_resource_model
	How to use commcare_resource_model


	CommCare HQ Services Guides
	PostgreSQL
	Adding a postgresql hot standby node
	On primary node
	On the standby node

	Promoting a hot standby to master
	Splitting a shard in postgresql
	Assumptions
	Important Notes
	Process Overview
	Process detail
	1. Setup logical replication on pg1
	2. Setup pg2 and pg3
	3. Stop all DB requests
	4. Update configuration
	5. Restart services


	Moving a PostgreSQL sharded database
	Assumptions
	Process Overview
	Process detail
	1. Setup pg2 as a standby node of pg1
	2. Stop all DB requests
	3. Check document counts in the databases
	4. Update configuration
	5. Verify config changes
	6. Promote pg2 to master
	7. Verify doc counts
	8. Update pl_proxy config
	9. Restart services
	10. Validate the setup
	11. Cleanup

	Other useful commands

	Upgrading PostgreSQL
	Upgrade preparation
	1. Run the deploy_postgres.yml playbook to ensure your system is up to date
	2. Update PostgreSQL version and port
	3. Run the deploy_postgres.yml playbook to install the new version of PostgreSQL

	Perform the upgrade
	1. Stop all processes connecting to the databases
	2. Run the upgrade playbooks
	3. Revert to using the old port
	4. Upgrade the psql client


	Migrate plproxy to new node
	Upgrading CitusDB
	Upgrade ‘citus’
	Prepare for the ‘citus’ extension upgrade
	1. Run the deploy_citusdb.yml playbook to ensure your system is up to date

	Upgrade the ‘citus’ extension
	1. Update public.yml
	2. Run the deploy_citusdb.yml playbook
	3. Check the extension version


	Upgrade PostgreSQL
	Prepare for the PostgreSQL upgrade
	1. Update public.yml
	2. Run the deploy_citusdb.yml playbook to install the new version of PostgreSQL

	Perform the upgrade
	1. Stop all processes connecting to the databases
	2. Run the upgrade playbooks
	3. Revert to using the old port



	Usage in CommCare
	Configuration
	Basic setup
	Separate database servers


	BlobDB
	Migrate from File System backend to an S3 compatible backend
	Ensure that the S3 endpoint is up and accessible
	Send new writes to the S3 endpoint
	Flip to just the new backend

	Migrate from one S3 backend to another
	Send new writes to the new S3 endpoint
	Flip to just the new backend

	Back-fill all existing data
	Usage in CommCare
	Migrating from one BlobDB backend to another

	Nginx
	SSL certificate setup for nginx
	Use of Ansible
	Use of Certbot
	Monitoring
	Procedure to configure SSL for a new environment

	1. Set up site without HTTPS
	2. Request a letsencrypt cert
	3. Update settings to take advantage of new certs

	Migrating Nginx
	Usage in CommCare

	Kafka
	Resources
	Dependancies
	Setup
	Expanding the cluster
	Useful commands
	Show topic configuration
	Add new partitions to topic
	Move partitions
	Replication

	Upgrading Kafka

	Pillowtop
	Usage in CommCare
	Splitting a pillow

	RabbitMQ
	Usage in CommCare
	Guides

	Redis
	Usage in CommCare
	Guides
	Tools
	Configuration recommendations
	Disk


	Set up Bitly for generating app codes
	Keepalived
	Operational Notes:-


	Backups and Disaster Recovery
	Backup and Restore
	Warning
	Backup to Amazon S3 or a compatible service
	S3 credentials
	Endpoints
	Receiving email alerts if check fails

	PostgreSQL Backups
	Enabling S3 backups for PostgreSQL
	Restoring PostgreSQL Backups
	plain (pg_basebackup) without S3
	plain (pg_basebackup) with S3
	dump (pg_dumpall)


	CouchDB backups
	Restoring CouchDB backups (on a single node cluster)

	BlobDB Backups
	Restoring BlobDB Backups

	Elasticsearch Snapshots
	Restoring Elasticsearch Snapshots


	ElasticSearch Backup on Swift API
	Configuring and Testing.
	What Does Ansible do.


	Disaster Recovery
	Overview
	Setting up a secondary environment
	Remote Backups
	Database Replication
	Example models


	Securing CommCare HQ
	Introduction
	Application Security
	Host and Disk Security
	Network and Physical Security

	Reference Annexure
	CommCare Cloud Reference
	Installation
	Installation using a script
	Step 1.
	Step 2.
	Step 3.

	Manual Installation
	Setup
	Manual setup
	Setup and activate the virtualenv
	Install commcare-cloud with pip

	git-hook setup

	Point to your environments directory

	Configuring your CommCare Cloud Environments Directory
	Creating environments directory
	Going off the Dimagi example
	Layout of an environments directory
	_authorized_keys
	_users

	Contents of an environment configuration directory
	app-processes.yml
	Management Commands
	Celery Processes
	Pillows
	fab-settings.yml
	inventory.ini
	known_hosts
	meta.yml
	postgresql.yml
	proxy.yml
	public.yml
	vault.yml



	Configurating postgresql.yml
	dbs
	main
	formplayer
	ucr
	synclogs
	form_processing
	proxy
	proxy_standby
	partitions
	shards

	“db config” type
	django_alias
	name
	host
	pgbouncer_host
	pgbouncer_hosts
	pgbouncer_endpoint
	port
	user
	password
	options
	django_migrate
	query_stats
	create


	override
	SEPARATE_SYNCLOGS_DB
	SEPARATE_FORM_PROCESSING_DBS
	DEFAULT_POSTGRESQL_HOST
	REPORTING_DATABASES
	LOAD_BALANCED_APPS

	Commands
	Running Commands with commcare-cloud
	Positional Arguments
	<env>

	Options
	--control
	--control-setup {yes,no}
	cchq alias
	Underlying tools and common arguments
	Ansible-backed commands
	--skip-check
	--quiet
	--branch <branch>
	--output [actionable|minimal]

	List of Commands
	Internal Housekeeping for your commcare-cloud environments
	validate-environment-settings Command
	update-local-known-hosts Command

	Ad-hoc
	lookup Command
	Positional Arguments
	server
	ssh Command
	Positional Arguments
	server
	Options
	--quiet
	audit-environment Command
	Options
	--use-factory-auth
	scp Command
	Positional Arguments
	source
	target
	Options
	--quiet
	run-module Command
	Example
	Positional Arguments
	inventory_group
	module
	module_args
	Options
	--use-factory-auth
	The ansible options below are available as well
	Privilege Escalation Options
	Connection Options
	run-shell-command Command
	Example
	Positional Arguments
	inventory_group
	shell_command
	Options
	--silence-warnings
	--use-factory-auth
	The ansible options below are available as well
	Privilege Escalation Options
	Connection Options
	send-datadog-event Command
	Positional Arguments
	event_title
	event_text
	Options
	--tags [TAGS ...]
	--alert_type {error,warning,info,success}
	django-manage Command
	Example
	Options
	--tmux
	--server SERVER
	--release RELEASE
	--tee TEE_FILE
	--quiet
	tmux Command
	Example
	Positional Arguments
	server
	remote_command
	Options
	--quiet
	export-sentry-events Command
	Options
	-k API_KEY, --api-key API_KEY
	-i ISSUE_ID, --issue-id ISSUE_ID
	--full
	--cursor CURSOR
	pillow-topic-assignments Command
	Positional Arguments
	pillow_name
	Options
	--csv

	Operational
	secrets Command
	Positional Arguments
	{view,edit,list-append,list-remove}
	secret_name
	migrate-secrets Command
	Positional Arguments
	from_backend
	Options
	--to-backend TO_BACKEND
	ping Command
	Positional Arguments
	inventory_group
	Options
	--use-factory-auth
	ansible-playbook Command
	Example
	Positional Arguments
	playbook
	Options
	--use-factory-auth
	The ansible-playbook options below are available as well
	Connection Options
	Privilege Escalation Options
	deploy-stack Command
	Options
	--use-factory-auth
	--first-time
	update-config Command
	after-reboot Command
	Positional Arguments
	inventory_group
	Options
	--use-factory-auth
	bootstrap-users Command
	Options
	--use-factory-auth
	update-users Command
	Options
	--use-factory-auth
	update-user-key Command
	Positional Arguments
	username
	Options
	--use-factory-auth
	update-supervisor-confs Command
	Options
	--use-factory-auth
	fab Command
	Positional Arguments
	fab_command
	Options
	-l
	Obsolete fab commands
	deploy Command
	Positional Arguments
	{commcare,formplayer}
	Options
	--resume RELEASE_NAME
	--private
	-l SUBSET, --limit SUBSET
	--keep-days KEEP_DAYS
	--skip-record
	--commcare-rev COMMCARE_REV
	--ignore-kafka-checkpoint-warning
	--update-config
	list-releases Command
	Options
	--limit LIMIT
	clean-releases Command
	Options
	-k N, --keep N
	-x [EXCLUDE ...], --exclude [EXCLUDE ...]
	preindex-views Command
	Options
	--commcare-rev COMMCARE_REV
	--release RELEASE_NAME
	service Command
	Example
	Positional Arguments
	{celery,citusdb,commcare,couchdb2,elasticsearch,elasticsearch-classic,formplayer,kafka,nginx,pillowtop,postgresql,rabbitmq,redis,webworker}
	{start,stop,restart,status,logs,help}
	Options
	--only PROCESS_PATTERN
	migrate-couchdb Command
	Positional Arguments
	migration_plan
	{describe,plan,migrate,commit,clean}
	Options
	--no-stop
	downtime Command
	Positional Arguments
	{start,end}
	Options
	-m MESSAGE, --message MESSAGE
	-d DURATION, --duration DURATION
	copy-files Command
	Positional Arguments
	plan_path
	{prepare,copy,cleanup}
	list-postgresql-dbs Command
	Options
	--compare
	celery-resource-report Command
	Options
	--show-workers
	--csv
	pillow-resource-report Command
	Options
	--csv
	kill-stale-celery-workers Command
	perform-system-checks Command
	couchdb-cluster-info Command
	Shard counts are displayed as follows
	Options
	--raw
	--shard-counts
	--database DATABASE
	--couch-port COUCH_PORT
	--couch-local-port COUCH_LOCAL_PORT
	--couchdb-version COUCHDB_VERSION
	terraform Command
	Options
	--skip-secrets
	--apply-immediately
	--username USERNAME
	terraform-migrate-state Command
	Options
	--replay-from REPLAY_FROM
	aws-sign-in Command
	Options
	--duration-minutes DURATION_MINUTES
	aws-list Command
	aws-fill-inventory Command
	Options
	--cached
	openvpn-activate-user Command
	Positional Arguments
	vpn_user
	Options
	--use-factory-auth
	openvpn-claim-user Command
	Positional Arguments
	vpn_user
	Options
	--use-factory-auth
	forward-port Command
	Positional Arguments
	{flower,couch,elasticsearch}



	Slack Notifications from CommCare Cloud

	User Access Management
	Setting up CommCare HQ Server Administrators
	Adding users during installation
	Adding and Removing users in steady state
	Running Commands using commcare-cloud


	Firefighting Production Issues
	Firefighting Guide
	HQ Architecture and Machines
	High-level System Monitoring and Alerts
	Control machine log files
	In case of a reboot
	After reboot, whether or not it was deliberate
	Applying file system check for every reboot
	1. View and modify PASS value in /etc/fstab
	2. Change “Maximum number of mounts”
	3. Change kernel parameter


	In case of network outage
	Check services
	Check that change feeds are still processing

	Service Information
	Datadog Dashboards

	Switching to Maintenance Page
	Couch 2.0
	Couch node is down
	Couch node data disk is high
	Couch node data disk is full
	Compacting a shard
	Documents are intermittently missing from views
	DefaultChangeFeedPillow is millions of changes behind
	Figure out when the rewind happened
	Find a recent seq
	Reset the pillow checkpoint to this “good” seq


	Nginx
	NFS & File serving / downloads
	Troubleshooting

	Pgbouncer
	Get a pgbouncer shell
	Check connection status

	Postgres Troubleshooting
	Common restart problems
	Dealing with too many open connections
	Kill all idle connections
	Kill a single query
	Replication Delay

	PostgreSQL disk usage

	Celery
	Monitoring
	Celery consuming all the disk space

	Elasticsearch
	Check Cluster Health
	Data missing on ES but exist in the primary DB (CouchDB / PostgreSQL)
	Low disk space free
	Request timeouts
	Unassigned shards

	Redis
	Selectively flushing keys
	Disk full / filling rapidly
	Checking redis after restart
	Tail the redis log

	Pillows / Pillowtop / Change feed
	Managing Pillows

	Formplayer / Cloudcare / Webapps
	Lock issues

	Full Drives / Out of Disk Space
	Basic Commands
	Clean Releases
	Move logs to another drive
	Clear the apt cache
	Manually rotate syslog
	Look at temp folders

	Network Connection Issues (please help expand)
	Ping
	netcat

	Tips and Tricks
	Some Short Write-ups and Examples
	Backups
	SMS Gateways

	Celery Firefighting Guide
	Queue is blocked
	Symptoms
	Resolution

	Worker is down
	Symptoms
	Resolution

	Worker won’t start
	Symptoms
	Resolution

	Worker did not shut down properly
	Symptoms
	Resolution

	Worker is deadlocked
	Symptoms
	Resolution

	The queue the worker is consuming from has a large backlog of tasks
	Symptoms
	Resolution

	Intermittent datadog connection errors
	Symptoms
	Resolution
	Common RabbitMQ Firefighting Scenarios


	RabbitMQ is down
	Symptoms
	Resolution

	Disk filling up
	Symptoms
	Resolution
	Useful Celery Commands


	Show celery tasks
	Show celery workers
	Shut down a celery worker
	Revoke celery tasks
	Purge queue
	List Virtual Hosts
	List number of messages in each queue


	Specialized Howtos
	White label an existing CommCare HQ instance
	Customization possible
	Not supported

	Configure a firewall on the servers
	Configuration

	Adding a new machine to a cluster
	Performance benchmarking
	Migrating zookeeper to a new node.
	Add a new celery machine into existing cluster
	Setup the new node
	Configure
	Update Configs
	Deploy code
	Update supervisor config

	Add a new CouchDB node to an existing cluster
	Setup the new node and add it to the cluster
	Migrate database shards to the new node
	Cleanup

	Configuring VirtualBox for testing CommCare HQ
	Step 1: Download and Install VirtualBox
	Step 2: Download, Install, and Configure Ubuntu
	Step 3: Configuring VirtualBox Networking
	NAT
	Bridged
	Prerequisites
	Setting up Bridged mode:



	Setup Sentry self hosting
	How to setup

	Tips and Tricks
	Update localsettings in a specific release
	Limitations
	Usage scenario
	Setup
	Update configuration in that release only


	How To Rebuild a CommCare HQ environment
	Prior to Wiping Data
	How To Wipe Persistent Data
	Rebuilding environment
	Start new environment
	Troubleshooting
	Issues with check_services



	Settings in public.yml
	Email addresses

	Ports Required for CommCare HQ

	About this changelog
	Changelog
	2024-04-30 Copy Supply Point data to Invitation model Location Field
	2024-02-13 SQL Repeat Record Migration addendum
	2024-03-29 Upgrade To Node 20
	2024-02-13 SQL Repeat Record Migration
	2024-01-14 Elasticsearch upgrade from 2.4.6 to 5.6.16
	2023-10-25 Reindex All Indices For Elasticsearch Upgrade
	2023-09-12 update-to-python-3.9.18
	2023-06-14 Prepare project spaces for Case List Explorer report release
	2023-04-10 upgrade-redis-to-v7
	2023-03-23 Upgrade to Ubuntu 22.04
	2023-03-09 Update Node to v16
	2023-01-10 Configure Java 17 for Formplayer
	2023-01-10 Install Dart Sass as npm global dependency in preparation of Bootstrap upgrade
	2022-12-20 Dropping support for 3.6
	2022-12-13 remove-unused-elastic-settings
	2022-12-13 Populate a new field for Data Forwarders
	2022-11-28 New script added for virtualenv activation
	2022-11-11 Backfill SMS event data for API performance
	2022-11-08 kafka-upgrade-to-3.2.3
	2022-11-08 Install Elasticsearch Phonetic Analysis Plugin
	2022-11-07 Upgrade to Python 3.10
	2022-11-01 postgres-v14-upgrade
	2022-10-30 RabbitMQ upgrade to 3.10.7 version
	2022-09-15 Update Prometheus variable
	2022-09-15 upgrade-kafka_3.2.0
	2022-09-14 bootstrap-userrole-auditing
	2022-09-05 upgrade-zookeeper_3.7.1
	2022-08-23 upgrade-redis
	2022-08-19 upgrade-ansible
	2022-08-11 historical-auditcare-data-migration
	2022-06-17 Remove report_cases and report_xforms indices
	2022-06-03 Postgres upgrade from 9.6 to 10
	2022-05-25 update-supervisor-confs
	2022-04-19 Update PgBouncer configuration to support multiple processes
	2022-04-11 Upgrade Node.js to 14.19.1 and npm to 7.24.2
	2021-11-02 Upgrade CommCare HQ to Python 3.9
	2021-06-09 Migrate forms & cases from Couch to SQL
	2021-03-23 Optionally configure auditcare db
	2021-03-16 Update Formplayer request mapping
	2021-01-11 Dropping support for Python 2
	2021-01-08 Install new apt requirements on machines running commcarehq code
	2020-11-16 update-letsencrypt-to-alternate-chain
	2020-10-22 Update PostgreSQL monit configurations to be version specific
	2020-10-14 Run command to update Supervisor configurations
	2020-07-23 Run command to clear sensitive information from Django sessions
	2020-07-09 Switch to new package manager
	2020-04-16 Update git to the latest version
	2020-02-28 Update deploy CommandArgs
	2020-02-05 ES upgrade from 1.7.6 to 2.4.6
	2019-11-06 Update Formplayer Configuration
	2019-08-30 Upgrade Sentry
	2019-08-23 Add deploy Command
	2019-08-23 Removing support for Riak CS
	2019-08-23 Fix python3 virutalenvs (Deprecated)
	2019-08-21 Move remaining management commands explicitly
	2019-08-20 Rename management commands explicitly
	2019-07-17 Define management commands explicitly
	2018-07-18 Upgrade to Python 3
	2019-05-13 Install Pango
	2019-02-26 Fix to restart nginx after every letsencrypt cert auto-renewal
	2019-04-05 Update RabbitMQ logging configuration
	2019-02-27 Remove celery results backend from localsettings
	2019-02-26 Split pgbouncer vars from postgresql vars
	2019-02-27 Only monitor specific RabbitMQ queues
	2019-02-22 Update supervisor confs to invoke celery directly
	2019-02-22 Separate celery datadog http check
	2019-02-11 Add tag to datadog http checks
	2019-02-11 Java upgrade for formplayer
	2019-02-01 Generalize load case from fixture feature
	2019-01-16 Fix encrypted temp directory permissions
	2019-01-02 Restart nginx after every letsencrypt cert auto-renewal
	2018-12-15 Blob Metadata Migration - part 2
	2018-09-24 Blob Metadata Migration - part 1
	2018-11-26 Reorganize pillows
	2018-11-20 New Case Importer Celery Queue
	2018-08-16 Support multiple Kafka brokers
	2018-08-16 Add queue for analytics tasks
	2018-07-25 Update Supervisor
	2018-07-13 Update supervisor service definitions
	2018-06-11 Added encrypted temporary directory



